机器学习
LengenWaitForItDary
没想好叫什么名字1
别向后看
展开
-
机器学习笔记5未完待续
5:Logistic regressionstep1step2.goodness of function可以最大化L的w和b最佳转为求最小化-LnL(w,b)属于class1的标1,class2的标0cross entropy 算两个distribution有多接近最终是要使cross entropy最小则function最佳(target与output越接近越好)区别...原创 2020-04-07 22:05:37 · 203 阅读 · 0 评论 -
机器学习笔记4后半段
4:classification接上文classificationclassification:probabilistic generative model优化:减少参数——把不同的Gaussian给相同∑boundary:linear model总结如果所有维度都是独立的可以不用Gaussian用naive bayes classificationsigmoid fun...原创 2020-04-06 11:42:44 · 124 阅读 · 0 评论 -
机器学习笔记4前半段
4: Classification输入性质得出类型被宝可梦支配的恐惧输入数据找一个function实现classificationloss判断方法:分类错误的次数越小越好计算model的方法——几率要求P(c1)、 P(x|c1)、P(c2)、P(x|c2)从training data估算出这四个值的过程称为generative model有了它可以计算每一个x的出现几率...原创 2020-04-04 22:39:54 · 101 阅读 · 0 评论 -
机器学习笔记3-1
3-1 Gradient DescentGradient Descent(《机器学习笔记1前半段》已学习了大概)其中ⴄ:learning rate 学习速度 是一个常数(g^t微分以后的常数项放在了ⴄ下面)将其可视画(gradient就是等高线的法向方向)(gradient一直在变方向,因为每次乘learning rate的时候都要取相反数)Tip 1 小心设置learning ...原创 2020-04-03 21:26:40 · 136 阅读 · 0 评论 -
机器学习笔记2
2:where does the error come from?error来源于?bias和variance2.bias and variation of estimatorbias期望=均值则unbias (一开始就瞄准靶心)期望≠均值bias (未瞄准靶心)model越复杂bias越小(越复杂model set越大,越有可能包含靶心)variation(射出与瞄...原创 2020-04-03 00:00:24 · 188 阅读 · 0 评论 -
机器学习笔记1后半段
1:Regression-case study*宝可梦继续:) *1. how’s the results?average error on training data——31.9如何减少误差?①换个模型:如换成y=b+w1·xcp+w2·(xcp)^2+ w3·(xcp) ^3……越复杂的模型(仍然是线性)在training data上error下降,在testing data上er...原创 2020-04-01 23:26:32 · 194 阅读 · 0 评论 -
机器学习笔记1前半段
1:Regression-case study前半段李老师,为什么讲机器学习你说半天宝可梦!!完全不知道在说什么1.1.步骤step1:Modelb:贝叶斯step2:goodness of function上标:整体,下标:特性判断好坏用loss function(有多坏)红色代表非常大蓝色最小w为负不合理step3:best function2.gradien...原创 2020-03-31 23:35:44 · 161 阅读 · 0 评论 -
机器学习笔记0-1
0-1 Introduction to machine learning一、:)河狸筑水坝:if"听到水流声音",筑堤坝直到听不到流水声1.人类设定好的天生本能:建特定规则,无法超越创造者2.机器学习:写关于学习的程序使它有学习的能力(根据提供的资料寻找function的能力)3.机器学习的框架:a set of function——training data——判断goodness o...原创 2020-03-30 23:15:09 · 188 阅读 · 0 评论