自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 资源 (1)
  • 问答 (1)
  • 收藏
  • 关注

原创 给自己看的OpenGL基础入门教学

一份粗略的OpenGL(Glad+GLFW3)的入门指导教程——>给我自己看的只是为了完成某门2学分但有四个大作业的可成(っ °Д °;)っ

2024-05-30 22:24:54 632

原创 一份latex的学习总结(随缘持续更新…)

一份Latex的学习笔记,随缘记得,随缘看吧,或许以后用到了新的东西还会再往里面写写的感觉有的常识性的东西写的不是很清楚,如果看不明白评论一下吧(或者直接GPT更快)

2024-02-17 01:32:26 944 2

原创 给自己看的Markdown语法大全

因为是我自己的查询字典,这个是我从一份我自己写的Typora文件上复制来的,但是因为两边编写规则的细微不同,因此本文件中存在一些奇奇怪怪的地方,有很多的东西可能会显得毫无必要,因此最后我会附上我的markdown源文件

2023-10-06 15:55:15 133 1

原创 Python实现BFS和DFS搜索算法

Python实现BFS和DFS搜索算法

2022-11-11 11:06:26 489

原创 GA搜索(浮点编码形式的 遗传算法 )

【代码】GA搜索(浮点编码形式的 遗传算法 )

2022-11-11 10:25:41 623

原创 专栏介绍及目录

经典控制理论专栏的目录

2022-08-05 22:16:54 148

原创 粒子群算法、遗传算法、差分进化算法、模拟退火算法、蚁群算法优缺点对比

粒子群算法、遗传算法、差分进化算法、模拟退火算法、蚁群算法优缺点对比

2022-06-03 23:12:02 5662

原创 模拟退火算法介绍及matlab实现

对模拟退火算法在使用上进行了介绍,并利用matlab进行了功能复现

2022-06-03 23:07:20 6904 2

原创 粒子群算法介绍、matlab实现及相关改进

对粒子群算法(PSO)进行了使用上的介绍,并利用matlab进行功能实现。同时,为了解决PSO容易局部最优解的情况,还介绍了几种方法对于PSO进行改进,并比较了器效率。

2022-06-03 22:23:25 2258 5

原创 蚁群算法简要介绍及算法实现解决TSP问题

介绍蚁群算法情况并利用matlab实现算法解决TSP问题

2022-06-03 22:18:49 1127

原创 差分进化算法

该文章为本人在学习该算法时的笔记记录,主要对差分进化算法的各个细节进行了阐述,同时附上了自己写的该算法的代码!

2022-06-02 20:57:05 1170

声光报警LCD小闹钟.pdf

声光报警 LCD 小闹钟,实现简易的闹钟功能,能够通过按键输入时间和设置选项,并将时间时时显示在显示屏上。在时间达到设置值是,蜂鸣器发出警报,并且 LED 长亮,直到按下 stop 按钮时,警报和报警灯关闭。 在上述描述基础上,添加倒计时功能,并设置“返回”、“停止”、“复位”等按键,并实现相对应的功能。 本设计主要由中央控制模块、指令输入模块、显示模块、报警模块四部分构成。按系统功能实现要求,中央控制模块采用 AT89C51 单片机,通过程序来处理外部输入指令,并对其进行解析,一次控制其他功能模块实现相对应功能;指令输入模块采用 4x4矩阵键盘;显示模块采用 LCD1602 屏幕;报警模块采用蜂鸣器和 LED 灯组合形成,并通过继电器控制开关。

2022-11-11

基于OpenCV的树莓派元件检测与识别.pdf

本设计是基于树莓派的物体识别装置,本设计的树莓派环境配置工作采用RaspberryPi官网的树莓派图形桌面系统:“Raspberry Stretch with desktop and recommended software”。硬件方面采用Raspberry Pi 3B+和摄像头搭配的方式,配合相关算法,实现相应功能。该系统的主要功能为电子元器件的检测与识别。本文将以“基于opencv的树莓派电子元件检测与识别”为题,以包括项目背景意义、视觉采集平台搭建、图片库创建及说明、检测与识别、问题与修改、总结等五个部分来阐述完成课程设计的主要过程,同时在问题讨论中附上许多在完成本课程设计过程遇到等问题,结合实际,使得本文的阐述更加全面,也为本文软硬件搭配的选择及其合理性提供了一定的事实依据以及理论上的可行度。

2022-11-11

Matlab 智能优化算法 (粒子群算法、模拟退火算法、差分进化算法、蚁群算法) 附matlab源代码

Matlab 智能优化算法 (粒子群算法、模拟退火算法、差分进化算法、蚁群算法) 附matlab源代码

2022-06-03

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除