配置文件
在前面我们通过指定配置文件打开Redid服务端
也修改过是否支持后台开启的配置。
下面就来看一看更多的配置文件配置redis的操作吧
redis.conf 配置项说明如下
Redis默认不是以守护进程的方式运行,可以通过该配置项修改,使用yes启用守护进程
daemonize no当Redis以守护进程方式运行时,Redis默认会把pid写入/var/run/redis.pid文件,可以通过pidfile指定
pidfile /var/run/redis.pid指定Redis监听端口,默认端口为6379,作者在自己的一篇博文中解释了为什么选用6379作为默认端口,因为6379在手机按键上MERZ对应的号码,而MERZ取自意大利歌女Alessia Merz的名字
port 6379绑定的主机地址
bind 127.0.0.1
5.当客户端闲置多长时间后关闭连接,如果指定为0,表示关闭该功能
timeout 300指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为verbose
loglevel verbose日志记录方式,默认为标准输出,如果配置Redis为守护进程方式运行,而这里又配置为日志记录方式为标准输出,则日志将会发送给/dev/null
logfile stdout设置数据库的数量,默认数据库为0,可以使用SELECT 命令在连接上指定数据库id
databases 16指定在多长时间内,有多少次更新操作,就将数据同步到数据文件,可以多个条件配合
save
Redis默认配置文件中提供了三个条件:
save 900 1
save 300 10
save 60 10000
分别表示900秒(15分钟)内有1个更改,300秒(5分钟)内有10个更改以及60秒内有10000个更改。指定存储至本地数据库时是否压缩数据,默认为yes,Redis采用LZF压缩,如果为了节省CPU时间,可以关闭该选项,但会导致数据库文件变的巨大
rdbcompression yes指定本地数据库文件名,默认值为dump.rdb
dbfilename dump.rdb指定本地数据库存放目录
dir ./设置当本机为slav服务时,设置master服务的IP地址及端口,在Redis启动时,它会自动从master进行数据同步
slaveof当master服务设置了密码保护时,slav服务连接master的密码
masterauth设置Redis连接密码,如果配置了连接密码,客户端在连接Redis时需要通过AUTH 命令提供密码,默认关闭
requirepass foobared设置同一时间最大客户端连接数,默认无限制,Redis可以同时打开的客户端连接数为Redis进程可以打开的最大文件描述符数,如果设置 maxclients 0,表示不作限制。当客户端连接数到达限制时,Redis会关闭新的连接并向客户端返回max number of clients reached错误信息
maxclients 128指定Redis最大内存限制,Redis在启动时会把数据加载到内存中,达到最大内存后,Redis会先尝试清除已到期或即将到期的Key,当此方法处理 后,仍然到达最大内存设置,将无法再进行写入操作,但仍然可以进行读取操作。Redis新的vm机制,会把Key存放内存,Value会存放在swap区
maxmemory指定是否在每次更新操作后进行日志记录,Redis在默认情况下是异步的把数据写入磁盘,如果不开启,可能会在断电时导致一段时间内的数据丢失。因为 redis本身同步数据文件是按上面save条件来同步的,所以有的数据会在一段时间内只存在于内存中。默认为no
appendonly no指定更新日志文件名,默认为appendonly.aof
appendfilename appendonly.aof指定更新日志条件,共有3个可选值:
no:表示等操作系统进行数据缓存同步到磁盘(快)
always:表示每次更新操作后手动调用fsync()将数据写到磁盘(慢,安全)
everysec:表示每秒同步一次(折衷,默认值)
appendfsync everysec指定是否启用虚拟内存机制,默认值为no,简单的介绍一下,VM机制将数据分页存放,由Redis将访问量较少的页即冷数据swap到磁盘上,访问多的页面由磁盘自动换出到内存中(在后面的文章我会仔细分析Redis的VM机制)
vm-enabled no虚拟内存文件路径,默认值为/tmp/redis.swap,不可多个Redis实例共享
vm-swap-file /tmp/redis.swap将所有大于vm-max-memory的数据存入虚拟内存,无论vm-max-memory设置多小,所有索引数据都是内存存储的(Redis的索引数据 就是keys),也就是说,当vm-max-memory设置为0的时候,其实是所有value都存在于磁盘。默认值为0
vm-max-memory 0Redis swap文件分成了很多的page,一个对象可以保存在多个page上面,但一个page上不能被多个对象共享,vm-page-size是要根据存储的 数据大小来设定的,作者建议如果存储很多小对象,page大小最好设置为32或者64bytes;如果存储很大大对象,则可以使用更大的page,如果不 确定,就使用默认值
vm-page-size 32设置swap文件中的page数量,由于页表(一种表示页面空闲或使用的bitmap)是在放在内存中的,,在磁盘上每8个pages将消耗1byte的内存。
vm-pages 134217728设置访问swap文件的线程数,最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的,可能会造成比较长时间的延迟。默认值为4
vm-max-threads 4设置在向客户端应答时,是否把较小的包合并为一个包发送,默认为开启
glueoutputbuf yes指定在超过一定的数量或者最大的元素超过某一临界值时,采用一种特殊的哈希算法
hash-max-zipmap-entries 64
hash-max-zipmap-value 512指定是否激活重置哈希,默认为开启
activerehashing yes指定包含其它的配置文件,可以在同一主机上多个Redis实例之间使用同一份配置文件,而同时各个实例又拥有自己的特定配置文件
include /path/to/local.conf
Redis的发布订阅
我们在消息队列中了解过发布订阅
- 当一个客户端A先去订阅一个频道
- 另一个客户端B向这个频道发布消息。
- 此时客户端A就会接收到B发送的消息
概念
客户端可以订阅频道如下图
当给这个频道发布消息后,消息就会发送给订阅的客户端
命令介绍
subscribe
SUBSCRIBE channel [channel ...]
订阅给定的一个或多个频道的信息。
publish
到现在为止,这两个subscibe都在监视着msg这个频道,接下来,如果msg频道有消息传出,必定会被subscribe接收到
PUBLISH channel message
将信息 message 发送到指定的频道 channel
Psubscribe
PSUBSCRIBE pattern [pattern ...]
订阅一个或多个符合给定模式的频道。
每个模式以 * 作为匹配符,比如 it* 匹配所有以 it 开头的频道( it.news 、 it.blog 、 it.tweets 等等), news.* 匹配所有以 news. 开头的频道( news.it 、 news.global.today 等等),诸如此类。
看到上面的解释,你心里可能就在想,这不就是正则匹配么。。。而且前缀“P”就是Pattern的意思,对吧,接下来我就订阅一下所有china为
演示
设置一个客户端A进行订阅 一个频道
这个时候处于接收消息阶段。
SUBSCRIBE 频道名
设置客户端B进行向频道中发送消息
publish 频道名 消息内容
结果
客户端A在第一时间接收到消息进行展示
Redis的新数据类型
Bitmaps
简介
计算机基础单位
Bitmaps数据类型
- Bitmaps本身不是一种数据类型, 实际上它就是字符串(key-value) , 但是它可以对字符串的位进行操作。
- Bitmaps单独提供了一套命令, 所以在Redis中使用Bitmaps和使用字符串的方法不太相同。 可以把Bitmaps想象成一个以位为单位的数组, 数组的每个单元只能存储0和1, 数组的下标在Bitmaps中叫做偏移量。
我的理解
Bitmaps是String类型的键值对
Bitmaps以位为单位,每个单位的值是0或1
(让我想到了可以进行用户的签到,每日签到的记录)
因为Bitmaps的单位很小,所以做记录之后消耗的内存就很小
常见命令
命令格式 | 描述 |
---|---|
setbit | 设置Bitmaps中某个偏移量的值(0或1) 偏移量从0开始,类似于下标 |
getbit | 获得指定偏移量上的值 |
bitcount[start end] | 统计字符串从start字节到end字节比特值为1的数量 |
操作演示
Bitmaps与Set的对比
假设网站有1亿用户, 每天独立访问的用户有5千万, 如果每天用集合类型和Bitmaps分别存储活跃用户可以得到表
从图可以看出Bitmaps的存储优势,针对特殊的条件占用资源远远小于Set
HypeLoglog
介绍
在工作当中,我们经常会遇到与统计相关的功能需求,比如统计网站PV(PageView页面访问量),可以使用Redis的incr、incrby轻松实现。但是消耗资源较大
HypeLoglog可以做到很好的基数统计算法
HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。
什么是基数?
比如数据集 {1, 3, 5, 7, 5, 7, 8}, 那么这个数据集的基数集为 {1, 3, 5 ,7, 8}, 基数(不重复元素)为5。 基数估计就是在误差可接受的范围内,快速计算基数。
常用命令
命令格式 | 描述 |
---|---|
pfadd < element> [element …] | 添加指定元素到 HyperLogLog 中 |
pfcount [key …] | 计算HLL的近似基数,可以计算多个HLL,比如用HLL存储每天的UV,计算一周的UV可以使用7天的UV合并计算即可 |
pfmerge [sourcekey …] | 将一个或多个HLL合并后的结果存储在另一个HLL中,比如每月活跃用户可以使用每天的活跃用户来合并计算可得 |
Geospatial
介绍
Redis 3.2 中增加了对GEO类型的支持。GEO,Geographic,地理信息的缩写。该类型,就是元素的2维坐标,在地图上就是经纬度。redis基于该类型,提供了经纬度设置,查询,范围查询,距离查询,经纬度Hash等常见操作。
常用命令
命令格式 | 描述 |
---|---|
geoadd< longitude> [longitude latitude member…] | 添加地理位置(经度,纬度,名称) |
geopos [member…] | 获得指定地区的坐标值 |
geodist | 获取两个位置之间的直线距离 |
geodist [m|km|ft|mi ]
m 表示单位为米[默认值]。
km 表示单位为千米。
mi 表示单位为英里。
ft 表示单位为英尺。
如果用户没有显式地指定单位参数, 那么 GEODIST 默认使用米作为单位