要求:给你一个链表数组,每个链表都已经按升序排列。请你将所有链表合并到一个升序链表中,返回合并后的链表。
输入:lists = [[1,4,5],[1,3,4],[2,6]]
输出:[1,1,2,3,4,4,5,6]
解释:链表数组如下:
[
1->4->5,
1->3->4,
2->6
]
将它们合并到一个有序链表中得到。
1->1->2->3->4->4->5->6
思路:分治合并
将 k个链表配对并将同一对中的链表合并;第一轮合并以后, k个链表被合并成了k/2个链表,平均长度为2n/k,然后是k/4个链表,k/8个链表等等;
重复这一过程,直到我们得到了最终的有序链表。简单来说就两两合并进行排序
复杂度分析:
- 时间复杂度:考虑递归「向上回升」的过程——第一轮合并 k/2组链表,每一组的时间代价是 O(2n);第二轮合并 k/4组链表,每一组的时间代价是O(4n)…
所以总的时间代价是 O(kn×logk),故渐进时间复杂度为 O(kn×logk)。
- 空间复杂度:递归会使用到O(logk)空间代价的栈空间。
public ListNode mergeKLists(ListNode[] lists) {
return merge(lists, 0, lists.length - 1);
}
/**
* 选择合并那两个数组的算法
* @param lists 链表数组
* @param l 最左面得数组集合
* @param r 最右面的数组集合
* @return 合并两个有序链表
*/
private ListNode merge(ListNode[] lists, int l, int r) {
if (l == r) {
return lists[l];
}
if (l > r) {
return null;
}
//右移运算符>>,运算结果正好能对应一个整数的二分之一值,这就正好能代替数学上的除2运算,但是比除2运算要快。
//mid=(r+1)>>1相当于mid=(r+1)/2
int mid = (r + l) >> 1;
return mergeTwoLists(merge(lists, l, mid), merge(lists, mid + 1, r));
}
private ListNode mergeTwoLists(ListNode a, ListNode b) {
if (a == null || b == null){
return a != null ? a : b;
}
ListNode head = new ListNode(0);
ListNode tail = head,aPtr = a,bPtr = b;
while (aPtr != null && bPtr != null){
if (aPtr.val<bPtr.val){
tail.next = aPtr;
aPtr = aPtr.next;
}else {
tail.next = bPtr;
bPtr = bPtr.next;
}
tail = tail.next;
}
tail.next = (aPtr != null ? aPtr : bPtr);
return head.next;
}