给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次。找出那个只出现了一次的元素。
说明:你的算法应该具有线性时间复杂度。 你可以不使用额外空间来实现吗?
示例 1:
输入: [2,2,1]
输出: 1
示例 2:
输入: [4,1,2,1,2]
输出: 4
**
思路:
如果不考虑时间复杂度和空间复杂度的限制,这道题有很多种解法,可能的解法有如下几种。
- 使用集合存储数字。遍历数组中的每个数字,如果集合中没有该数字,则将该数字加入集合,如果集合中已经有该数字,则将该数字从集合中删除,最后剩下的数字就是只出现一次的数字。
- 使用哈希表存储每个数字和该数字出现的次数。遍历数组即可得到每个数字出现的次数,并更新哈希表,最后遍历哈希表,得到只出现一次的数字。
上述两种解法都需要额外使用 O(n) 的空间,其中 n 是数组长度。
为了满足不适用额外的空间,使用位运算。对于这道题,可使用异或运算 \oplus⊕。异或运算有以下三个性质。
- 任何数和 0 做异或运算,结果仍然是原来的数,即a⊕0=a。
- 任何数和其自身做异或运算,结果是 0,即 a⊕a=0。
- 异或运算满足交换律和结合律,即a⊕b⊕a=b⊕a⊕a=b⊕(a⊕a)=b⊕0=b。
public int singleNumber(int[] nums) {
int s = 0;
for (int num : nums) {
s ^= num;
}
return s;
}