学习SOD-MTGAN:Small Object Detection via Multi-Task Generative Adversarial Network(基于多任务GAN的细小物体检测)
传送门
https://blog.csdn.net/leviopku/article/details/84399094
首先人家也是在想这个问题,在深度学习中对目标检测研究也十分久了,但是我们能发现,主要针对有细节纹理的大目标,而对于小目标,就是缺乏纹理细节,同时容易被背景噪声淹没的目标,咱们该如何用深度学习来弄出来,也跟跟风。
但是人家一直研究的是传统算法,对深度学习算法并不了解。这篇文章讲很多东西。如下
♥ 该算法提出了一种端到端的多任务生成对抗网络(MTGAN)♥
(●’◡’●)
♥端到端是啥子♥
传送门
https://blog.csdn.net/sssssyuan/article/details/104320663?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522162797743716780255243343%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=162797743716780255243343&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allsobaiduend~default-1-104320663.pc_search_result_control_group&utm_term=端到端的基本概念&spm=1018.2226.3001.4187
人家的理解就是嘴巴(输入端)和屁股(输出端),中间的过程就是你的消化系统(好复杂,咱们就不看这个黑匣子),你把东西吃进去,然后排出来。(●ˇ∀ˇ●)
当然排出来的就是咱们想要的预测结果。比如CNN网络吖~
♥生成对抗网络又是啥子♥
小伙伴一起讨论的时候,总给我讲博弈论🤡(为什么要给我讲,我们不是在讨论这个网络吗?难道小丑是我。)
人家就是利用的经济学的博弈论。比如两个人掰手腕,假设总的空间是一定的,你的力气大一点,那你就得到的空间多一点,相应的我的空间就少一点,相反我力气大我就得到的多一点,但有一点是确定的就是,我两的总空间是一定的,这就是二人博弈,但是呢总利益是一定的。(传送门——https://blog.csdn.net/qq_28168421/article/details/80993864?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522162797771216780274135543%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=162797771216780274135543&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2alltop_positive~default-1-80993864.pc_search_result_control_group&utm_term=%E7%94%9F%E6%88%90%E5%AF%B9%E6%8A%97%E7%BD%91%E7%BB%9C&spm=1018.2226.3001.4187)
咱们把这个思想往咱们的这个生成对抗网络里一放!就会看到,GAN中有两个这样的博弈者,一个是生成模型(G),另一个是判别模型(G),它们都有着各自的功能。
快快快打开我们的脑洞!想象一下(厨房篇)
一个是你爸爸一个是你妈妈,你爸爸和妈妈都在厨房,然后你妈妈看向你爸爸,说:做个麻婆豆腐出来,你爸爸就开始把今早买来的豆腐开始加工成麻婆豆腐的样子,然后你妈妈看了一眼,判断你爸爸做出的是不是麻婆豆腐。
妈妈:判别模型(传送门中的)
爸爸:生成模型(传送门中的)
但是这个时候,爸爸并不服气,凭什么我做菜要你判断,然后爸爸就说,我要做个假的麻婆豆腐,你看都看不出来。经过长时间的训练,爸爸终于做出了以假乱真的麻婆豆腐,妈妈都没发现!这个时候的你,肯定想学习一下爸爸的高超技术。而你的妈妈就闭嘴了。这个时候,爸爸妈妈就达到了平衡,在网络中叫做(纳什平衡)
哎呀┭┮﹏┭┮
时间有限,人家就先写在这里啦~
疫情快快过去