最便捷的一个本地连接OpenAI方法

如果我们想在本地调用线上的OpenAI 接口,实现自己项目里的一个写入式AI功能,最简单便捷的方法就是以下几个步骤:

1、找到KEY

打开官网地址:https://openai-hk.com/open/index  

点击右上角的“控制台”,再点击左侧的“获取KEY",再点击”复制KEY“

2、编辑系统环境变量

在电脑任务栏点击查找”放大镜“图标,再点击编辑系统环境变量

我的系统里面已有这两个变量,初次使用需要新建上面两个环境变量,具体方法为:

3、检查是否安装Python

(1)按下“win+R”建,输入“cmd" 回车,

(2)查看是否安装Python,显示版本,如果已安装,接着安装一下openai

4、测试

一般会创建一个独立的空间再添加程序,本次这边不创建了。

打开编辑器,粘贴下面代码

运行程序,稍等一会儿就可以看到调用的返回结果啦。

csdn.net

### 国内调用 OpenAI API 的方法和替代方案 由于OpenAI将于2024年7月9日终止对中国市场的API服务[^1],国内开发者需要考虑其他可行的解决方案。以下是几种推荐的方法: #### 使用 Azure OpenAI 服务 Azure OpenAI 提供了一种可靠的替代方案,能够满足中国市场的需求。通过微软提供的云服务平台,企业可以获得稳定的服务和支持。 ```python import os from azure.ai.textanalytics import TextAnalyticsClient from azure.core.credentials import AzureKeyCredential key = "YOUR_AZURE_API_KEY" endpoint = "https://<your-custom-subdomain>.cognitiveservices.azure.com/" credential = AzureKeyCredential(key) client = TextAnalyticsClient(endpoint=endpoint, credential=credential) def analyze_text(text): result = client.analyze_sentiment(documents=[text])[0] print("Document Sentiment: {}".format(result.sentiment)) ``` #### 利用本地部署的大规模语言模型 (LLMs) 对于希望保持数据主权并减少对外部依赖的企业来说,在本地环境中部署大规模语言模型是一个不错的选择。这种方法不仅提高了安全性,还可能带来更低的成本和技术自主权。 vLLM 是一款可以作为OpenAI API协议替代品的聊天模型服务器[^3]。它支持多种高级功能,如工具调用、多模态输入支持及令牌级别的流传输等功能。为了充分利用这些特性,建议采用 `langchain-openai` 包进行集成。 ```bash %pip install -qU langchain-openai ``` ```python from langchain.llms.vllm import VLLMLLM model_id = 'path/to/your/model' llm = VLLMLLM(model=model_id) response = llm.generate(["What is the weather like today?"]) print(response) ``` #### 开源社区贡献的非官方客户端库 一些开源爱好者也创建了兼容OpenAI API接口形式的第三方库,使得即使在失去原生接入权限的情况下也能继续享受类似的体验和服务质量。不过需要注意的是,这类资源可能存在更新频率不稳定等问题,因此选择前应充分评估风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值