我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:
假设m1,m2,…,mk两两互素,则下面同余方程组:
x≡a1(mod m1)
x≡a2(mod m2)
…
x≡ak(mod mk)
在0<=<m1m2…mk内有唯一解。
记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:
ei≡0(mod mj),j!=i
ei≡1(mod mj),j=i
很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。
这就是中国剩余定理及其求解过程。
现在有一个问题是这样的:
一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数。
Input输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1…MI,I=0 并且a=0结束输入,不处理。
Output对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。
Sample Input
2 1
2 3
0 0
Sample Output
5
解题思想:首先看到这道题时有点懵,因为不太懂那个中国剩余定理在说什么,所以先查了资料然后还是不太明白,但根据要求 “ 一个正整数N除以M1余(M1 - a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100 i=1,2,…I),求满足条件的最小的数 ” 这里突然想到那个N+a不就是M1,M2等的倍数吗?那不就是求他们的最小公倍数再减去一个a就行了。
#include <iostream>
#include <cstdio>
using namespace std;
long long gcd(long long a,long long b)
{
return b==0?a:gcd(b,a%b);
}
long long lcm(long long a,long long b)
{
return a*b/gcd(a,b);
}
int main()
{
int i,a;
while(scanf("%d%d",&i,&a)&&(i+a))
{
long long m;
long long ans=1;
for(int j=0;j<i;j++)
{
cin>>m;
ans=lcm(ans,m);
}
cout<<ans-a<<endl;
}
return 0;
}