提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
动态规划 一看就会一做就废(丧)
一、题目
单词拆分
给你一个字符串 s 和一个字符串列表 wordDict 作为字典。请你判断是否可以利用字典中出现的单词拼接出 s 。
注意:不要求字典中出现的单词全部都使用,并且字典中的单词可以重复使用。
示例
示例 1:
输入: s = “leetcode”, wordDict = [“leet”, “code”]
输出: true
解释: 返回 true 因为 “leetcode” 可以由 “leet” 和 “code” 拼接成。
示例 2:
输入: s = “applepenapple”, wordDict = [“apple”, “pen”]
输出: true
解释: 返回 true 因为 “applepenapple” 可以由 “apple” “pen” “apple” 拼接成。
注意,你可以重复使用字典中的单词。
示例 3:
输入: s = “catsandog”, wordDict = [“cats”, “dog”, “sand”, “and”, “cat”]
输出: false
提示
1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s 和 wordDict[i] 仅有小写英文字母组成
wordDict 中的所有字符串 互不相同
二、思路
看到题之后首先考虑动态规划,其要点在于能否有一个递推的公式呢?答案是可以的,根据题意,此处函数的意义是“前i个字符一定可以被拼接成功”,因此只要i+1~j的字符串出现在字典中,那前j个字符也可以被拼接成功。详细的解析不再赘述,可以参考:这个题解
此外我们还要注意,这个列表的数据是动态更新的,在一轮循环中也许是false,但在后续可能会成为true,
两轮循环已经成功的对所有情况进行了遍历。
三、代码
class Solution:
def wordBreak(self, s: str, wordDict: List[str]) -> bool:
n=len(s)
flag=[True]+[False for i in range(n)]
for i in range(n): #遍历可能的字符串开头
if(flag[i]==True): #前面可以被拼接
for j in range(i+1,n+1): #遍历可能的字符串结尾
if(s[i:j] in wordDict):
flag[j]= True
return flag[-1]