汉诺塔-递归解决
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。
我们假设现在有一个盘子:A→C
我们只需要将A上的盘子移动到C柱子就可以了。移动一次。
若有两个盘子,我们的移动方法为:A→B A→C B→C
此时我们需要移动三步,先将小的那一个盘子放在中途柱子B上,然后将大盘子从A移动到C,而后再把B上的盘子移到C。移动三次。
那么,三个盘子的移动情况呢?
A→C A→B C→B A→C B→A B→C A→C
这个时候就需要移动七次了。
可以看出,盘子的数量和移动次数的关系为:2^n-1
用递归的方法,我们可以这样思考这个问题:
简单来说,我们首先借助C柱子将A上的n-1个盘子按顺序放在B柱子上,然后将A柱子剩余的最后一个最大的盘子直接放到C柱子,而后再借助空的A柱子将B上的盘子移动到C。
那么,增加一个盘子,若可以调用上一个盘子的移动方法,那么我们就只用考虑比上一个盘子多
出来的那一个需要怎么移动了~
/**
* 1: A → C 1 2^1 - 1
* 2: A → B A → C B → C 3 2^2 - 1
* 3: A → C A → B C → B A → C B → A B → C A → C 7 2^3 - 1
* 4:
* 64: 2^64 - 1
* ——————————————————————————————————————————————————————————————————————————
* @param n 盘子的数目
* @param a 起始位置
* @param b 中途位置
* @param c 结束位置
*/
public static void hannuota(int n,char a,char b,char c){
if(n == 1){
move(a,c);
}else{
hannuota(n-1,a,c,b); //这里传参需要根据方法对应位置,在这一步,通过C将n-1盘子移动到b,b在这一步是结束位置
move(a,c);
hannuota(n-1,b,a,c);
}
}
public static void move(char pos1,char pos2){
System.out.print(pos1 + "->" + pos2 + " ");
}
public static void main(String[] args) {
hannuota(1,'A','B','C');
System.out.println();
hannuota(2,'A','B','C');
System.out.println();
hannuota(3,'A','B','C');
System.out.println();
}
public static int aum(int n){
if(n == 1){
return 1;
}
return n * aum(n-1);
}
public static int add1(int n){
if(n == 1){
return 1;
}
return n + add1(n - 1);
}
public static void print(int n){
if(n > 10){
print(n / 10);
}
System.out.print(n % 10 + " ");
}
public static int add(int n){
if(n < 10){
return n;
}else{
return (n%10) + add(n /= 10);
}
}
结果与自己移动推导相同。
以上,就是我对于递归实现汉诺塔的理解,欢迎大家评论交流~