计算智能第一次实验--智能优化算法(GrieWank函数)

本次实验在MATLAB R2018b环境中进行,主要任务包括生成并绘制Griewank函数图像、统计分析智能优化算法、绘制统计箱图、收敛曲线,以及运用ranksum函数分析差异性。通过编写多个脚本文件,实现了各个任务,并得到了相应的图形和分析结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验任务目的

1. 掌握Matlab基本脚本程序设计
2. 熟悉Matlab典型数据分析方法
3. 熟悉Matlab基本绘图函数使用
4. 掌握智能优化算法的性能评估方法

二、实验任务内容

问题描述:某智能优化算法A和算法B在求解Griewank函数的最小数值时,各自独立重复运行了30次,每次算法运行迭代1000代,算法测试过程中得到的所有数据分别存放在矩阵dataA和矩阵dataB中。dataA和dataB均为30行1000列的矩阵,矩阵的每行代表1次测试记录,30行代表30次测试记录,每次测试记录里存放了算法循环迭代1000代的函数数值结果(由于算法在寻找函数的全局最小值问题,因此这1000个数值数据呈现由大到小排列的趋势)。

任务要求:请采用matlab模拟生成数据dataA和dataB(或基于真实算法生成),然后基于这两组数据分析比较算法的性能。
1. 绘制基准测试Griewank函数在二维和三维空间的函数图形,分析该函数在不同维度下的特点;
2. 统计分析智能优化算法A和B在30次实验测试中获得的30个最优函数值的结果的均值,方差,最大,最小,中位数,数据可采用表格呈现;
3. 绘制算法测试结果的统计箱图,要求图中至少包括图形标题,横坐标标题,纵坐标标题等内容,图片保存为png格式;
4. 绘制算法A和算法B的平均收敛曲线(基于矩阵dataA和矩阵dataB内的数据),要求不同曲线使用不同的颜色、线型、和标记符号;
5. 基于算法A和算法B得到的30次最佳实验结果,分析两种算法的求解性能是否具有显著差异性;
    提示:可
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值