- 博客(1022)
- 收藏
- 关注
原创 为什么要进行sm3+base64转换,sm3和base64分别是什么?
其实很多人在使用 `SM3+Base64` 的时候只是“照着规范做”,但并不清楚背后的原理。 我们可以把它拆开来看,一步步讲清楚:---## 🧩 一、SM3 是什么?### 🌱 1. 定义**SM3** 是中国国家密码管理局发布的国产密码杂凑算法(标准号 GB/T 32905‑2016)。 它和国际上的 **SHA‑256** 类似,都是一种 **哈希算法(Hash Function)**。### 🔐 2. 作用SM3 接收任意长度的输入数据,
2025-11-11 04:00:00
185
原创 *逐行、逐段**讲解我之前给你的 Python + Flask 程序,它是如何一步步实现 **SM3 → Base64** 网页转换的
这是一个深入理解代码的好机会。 我们来**逐行、逐段**讲解我之前给你的 Python + Flask 程序,它是如何一步步实现 **SM3 → Base64** 网页转换的。 ---## 🧩 整体结构回顾这份脚本的文件名是 `sm3_base64_app.py`,作用可以分为三部分:1. **后端框架加载**(Flask,用于提供网页服务) 2. **核心计算逻辑**(SM3 + Base64 转换) 3. **网页界面展示**(HTML 页面模板)---
2025-11-11 00:45:00
916
原创 让 **Python 负责算法计算**(使用官方 gmssl 库保证正确性), 而浏览器前端只有界面,不参与哈希计算
让 **Python 负责算法计算**(使用官方 gmssl 库保证正确性), 而浏览器前端只有界面,不参与哈希计算
2025-11-11 00:15:00
242
原创 【云原生技术】机器迁移,在新机已装很多工具时,如何“以旧机版本为准”
你的场景很常见:新机上已经有 Maven/JDK 等,但你希望 Jenkins 和相关任务继续使用“旧机那一套版本/配置”。关键是“固定工具路径”和“控制 PATH 优先级”,避免系统默认版本干扰。
2025-11-10 01:00:00
197
原创 用 **Python** 实现一个网页版工具(输入卡号 → 输出 SM3+Base64 结果)
用 **Python** 实现一个网页版工具(输入卡号 → 输出 SM3+Base64 结果)
2025-11-10 01:00:00
331
原创 【】可以直接把jenkins这个包移到新机器就能用吗?
## 可以,一起迁过去只要你迁移的是 Jenkins 的数据目录(JENKINS_HOME,默认 `/var/lib/jenkins`),插件和数据都会原封不动带过去,包括:- `plugins/`:所有已装插件(`.jpi/.hpi`)、禁用状态、版本信息 - `jobs/*`:流水线、自由风格任务、构建历史 `builds/`、控制台日志、参数等 - `config.xml`、系统与全局配置 - `credentials.xml` 和 `secrets/`、`secret.key`(
2025-11-10 00:15:00
333
原创 做一个简单网页: 输入银行卡号 → 点击按钮 → 页面显示 SM3→Base64 的结果
好主意 👍 —— 你可以做一个**简单网页**: 输入银行卡号 → 点击按钮 → 页面显示 SM3→Base64 的结果。 下面给出一个**完整可运行页面(HTML + JS)**方案,不需要后台、完全前端运行(用纯 JavaScript 实现 SM3 + Base64)。 ---<!DOCTYPE html><html lang="zh-CN"><head> <meta charset="UTF-8" /> <title>SM3 + Base64 转换工具</titl
2025-11-10 00:15:00
219
原创 【云原生技术】从一台服务器迁移 Jenkins + Docker + Maven + JDK 的平移方案
从一台服务器迁移 Jenkins + Docker + Maven + JDK 的平移方案与
2025-11-09 01:00:00
454
原创 卡号做SM3然后再base64转换要怎么做?
很好问题 👍,你提到的流程是:**银行卡号(或任意字符串)→ SM3哈希 → Base64编码**。 我们可以一步步来看具体怎么实现。---## 🧩 操作流程概述1. **输入明文(比如银行卡号)** ``` 6222020200088888888 ```2. **计算 SM3 摘要** SM3 是国家密码局标准(国密算法),类似 SHA-256,输出一个 256-bit(32字节)的哈希值。3. **对 SM3 输出进行 Base64 编码**
2025-11-09 01:00:00
173
原创 【云原生技术】sftp传文件,如何查看这个传文件速度?
# 如何查看 SFTP 传文件速度下面以常见的 OpenSSH `sftp` 客户端为例,给出交互式、批处理、以及替代方案的查看方式。## 1) 交互式 sftp(最简单)`sftp` 在交互模式下带有进度条,默认会显示传输速度(MB/s)。```bashsftp user@hostsftp> progress # 确保进度条开启(可反复切换 ON/OFF)sftp> put /path/big.iso /remote/dir/# 示例输出(含速度与 ETA)# Upl
2025-11-09 00:30:00
150
原创 【云原生技术】磁盘的IO性能和磁盘的大小没有关系吗
# 磁盘的 I/O 性能和“磁盘大小”有没有关系?## 简短结论- 在本地单块磁盘的同一产品线里,容量和 I/O 性能不是线性关系,也不是“越大越快”。两者是不同维度。- 但在不同场景/介质下,会存在“相关”或“间接相关”的情况,导致你看到“加大容量”后性能也变化。下面分场景说明。---## 何时“基本无关”- **单块 HDD(机械盘)随机 IOPS**:几乎不随容量变化。随机 IOPS 主要由寻道/转速决定(7200/10K/15K rpm),而不是容量。- **同款企业 SSD
2025-11-09 00:30:00
523
原创 【云原生技术】sonarqube跑一段时间为什么会把磁盘空间占满
SonarQube 本身不会无节制地“写爆”磁盘,而是几个子组件在长时间运行和持续分析后不断累积数据。如果默认配置不加管控,磁盘最终会被挤满。下面按“原因 → 常见位置 → 应对办法”逐条解释,方便你快速定位并治理。 --------------------------------------------------一、Elasticsearch 索引($SONARQUBE_HOME/data/es*N*) 1. 原理 • SonarQube 把度量、问题、规则等数据同步到嵌入式 El
2025-11-09 00:30:00
1080
原创 【云原生技术】nmon是什么? 干嘛用的,对磁盘性能有什么好处吗
# nmon 是什么?做什么用?对磁盘性能有什么帮助?## 简介- nmon(Nigel’s Monitor)是一个开源的 Linux/AIX 性能监控工具,支持交互式实时查看和后台批量采集两种模式。- 可采集的范围很广:CPU、内存、磁盘 I/O、网络、文件系统、Top 进程等,并将数据写成 `.nmon` 文本,便于离线分析(如用 nmon_analyser、nmonchart)。简单理解:nmon不直接“提升性能”,但能让你更快、更全面地发现性能瓶颈,从而采取正确的优化手段。## 为什
2025-11-08 01:00:00
346
原创 【云原生技术】nmon 部署与采集实战指南(Linux)
# nmon 部署与采集实战指南(Linux)本指南给出在常见 Linux 发行版上快速部署 nmon 的方法,并提供“持续采集 + 归档”的生产可用方案(基于 cron),开箱即用。---## 1. 适用与目标- 适用:物理机、虚拟机、云主机(建议在宿主机而非容器内运行)- 采集内容:CPU、内存、磁盘、网络、文件系统、Top 进程等- 输出:`.nmon` 文本文件(可用 nmon_analyser、nmonchart、nmon2csv 等工具进行报表/可视化)---##
2025-11-08 00:30:00
945
原创 【云原生技术】linux服务器的磁盘空间性能有问题,要怎么解决?是加磁盘空间还是怎么着?
# Linux 磁盘“空间 vs 性能”问题怎么解决先说结论:单纯“加磁盘空间”不一定能提升性能。要分清是“容量不足”还是“性能瓶颈”。 - 容量问题(磁盘或 inode 快满) → 清理/扩容通常能立刻缓解,满载也可能导致性能恶化。 - 性能瓶颈(高时延/低带宽/IOPS不足) → 需要定位瓶颈点,再决定是加更快的盘/更高规格云盘、做 RAID/条带化、系统与应用优化等。下面给你一套“快速判断 → 原因定位 → 对策”的做法。## 一、快速判断(3 分钟出结论)把下面命令在业务低峰跑
2025-11-08 00:15:00
502
原创 【云原生技术】如何查看linux磁盘性能
# 在 Linux 上查看磁盘性能的常用方法与命令下面给你一套从“快速观察 → 过程定位 → 基准测试 → 健康诊断”的完整思路与常用命令,基本覆盖日常排查与评估磁盘性能的需求。## 你需要关注的关键指标- **吞吐量**:MB/s(如 `rkB/s`, `wkB/s`)- **IOPS**:每秒 I/O 次数(如 `r/s`, `w/s`)- **时延**:平均等待/完成时间(如 `r_await`, `w_await`),分位延迟在 fio/bpf 工具中更清晰- **队列深度**:平均
2025-11-07 01:00:00
992
原创 【云原生技术】如何自动创建 GitLab 与 Jenkins 的 Webhook(是否有接口)
如何自动创建 GitLab 与 Jenkins 的 Webhook(是否有接口)
2025-11-07 00:15:00
904
原创 【云原生技术】用docker如何批量导出镜像
下面给你“只用 Docker 工具链”的导出方法,涵盖单个仓库所有标签、打成独立 tar 或一个大 tar,以及整个项目批量导出。前置准备- 已安装: docker、curl、jq- 建议先登录 Harbor(便于 docker pull)或准备机器人账号 - docker login harbor.example.com - 机器人账号: robot$project+puller 和对应 token(只读即可)一、导出“单个仓库”的所有标签以 harbor.example.com/p
2025-11-06 00:30:00
18
原创 【云原生技术】想把harbor某个镜像仓库里面的镜像全部导出来,怎么做?
下面给你几种常用、可靠的导出方式。按你的需求选择其一即可(示例里用 harbor.example.com/project/repo 占位)。一、最省事推荐:用 skopeo 一次性把“该仓库的所有标签”同步到本地目录- 适合:需要把同一仓库(project/repo)的所有 tags 拉下来,且希望层去重、空间占用更小。- 优点:无需 Docker 守护进程;支持私有证书;能保留多架构清单(--all)。步骤1) 登录 Harbor(建议用 Harbor 机器人账号,权限仅 pull)```
2025-11-05 00:45:00
428
原创 【云原生技术】yaml里面imag字段,镜像配置分别是镜像地址/镜像仓库/镜像:tag嘛?
你的理解**基本对**,但还可以更精确和通俗地解释一下 Kubernetes YAML 里 `image` 字段(你可能是指 `image`,不是 `imag`)的“镜像配置”写法:---### image 字段格式说明```yamlimage: [镜像仓库地址]/[项目名或命名空间]/[镜像名]:[标签]```> 这是完整规范写法,不同场景下可以简写,K8s 会有默认补全规则。#### 1. **镜像仓库地址**(Registry/Domain)- 比如: - `harbo
2025-11-05 00:15:00
224
原创 【云原生技术】Harbor 的 API 提供了所有展示类的信息接口,而“上传/下载镜像”的底层逻辑其实是标准 Docker Registry v2 API(Harbor 就建立在这个协议上)
非常好的问题,你已经抓住核心了 ✅。 你的需求其实可以拆成两块看待: 1️⃣ 展示类(镜像仓库、镜像、版本、元数据) 2️⃣ 操作类(上传、下载镜像) Harbor 的 API 提供了所有展示类的信息接口,而“上传/下载镜像”的底层逻辑其实是标准 **Docker Registry v2 API**(Harbor 就建立在这个协议上)。 下面我一步步帮你理清思路、方案和可直接落地的做法。---## 一、功能拆解| 模块 | 功能 | 技术实现 ||------|----
2025-11-04 00:30:00
173
原创 【云原生技术】用户在 Web 页面上选择本地文件上传(镜像 tar 包)或下载某个镜像的 tar 包,而不是通过命令行 docker push/pull
@[TOC](选择本地文件上传(镜像 tar 包)或下载某个镜像的 tar 包)需求是:**用户在 Web 页面上选择本地文件上传(镜像 tar 包)或下载某个镜像的 tar 包**,而不是通过命令行 `docker push/pull`。 这种场景在自研平台(CI/CD 可视化、企业镜像门户)很常见。 分步梳理一个**可直接落地**的实现思路。 ---## 一、核心目标| 功能 | 用户动作 | 后端动作 ||------|-----------|-----------||
2025-11-04 00:15:00
477
原创 【云原生技术】镜像的构建日志和构建历史的api接口
镜像的构建日志和构建历史的api接口非常好的问题 👍。 你提到的 “镜像构建历史” 和 “构建日志” 在 Harbor 界面上确实可以看到,比如:- **构建历史(Build History)**:某个镜像在 Harbor 中的构建/推送记录(时间、来源等) - **构建日志(Build Log)**:如果镜像是通过 Harbor 的 **镜像构建功能(Harbor Robot Build / 自带构建或与 Notary、CICD 对接)**、**WebHook** 或 **Replicati
2025-11-03 16:46:30
600
原创 【云原生技术】获取镜像的最新版本,应该怎么获取
获取镜像的最新版本,应该怎么获取非常好的问题 ✅,你希望在你们平台上能自动识别出 **某个镜像最新的版本(tag)**,这个功能在镜像展示、快速部署、镜像更新检测时都非常常见。我来分两种情况讲清楚(Harbor API 直接实现 + 逻辑层判断),并提供调用示例👇---## 一、明确“最新版本”的含义其实 “最新版本” 可以有两种判定逻辑:| 类型 | 判定依据 | 典型场景 ||------|-----------|-----------|| **时间最新** | 按镜像 `pu
2025-11-03 16:44:53
771
原创 【Python-机器学习】鲁棒性是什么
非常棒的问题 🙌 “**鲁棒性(Robustness)**” 是机器学习、算法、软件测试中都非常核心的一个词, 但它的含义在不同上下文略有不同。 我们这里重点讲它在 **机器学习(包括线性回归)与系统工程** 中的含义。 ---## 🧩 一、鲁棒性的核心含义> **鲁棒性**,简单说就是: > **系统或模型在面对异常、噪声、变化或干扰时,仍然能保持稳定表现的能力。**换句话说,鲁棒性强的模型或系统,**抗干扰能力好,不容易崩溃或出错。**---## 🧠 二、
2025-10-27 01:00:00
897
原创 【Python-机器学习】线性回归模型(Linear Regression Models)是机器学习里最经典、最基础、也最重要的模型之一
优点缺点简单、高效、可解释性强只能捕捉线性关系参数估计可解析求解对异常值敏感可拓展性强(多项式、正则化)特征共线性会影响稳定性“线性回归是所有机器学习模型的起点。它教会我们:预测 ≈ 加权求和 + 偏置 —— 模型用数据学会权重,用代价函数学会权衡。
2025-10-27 00:15:00
882
原创 【Python-机器学习】mglearn.plots.plot_linear_regression_wave()用法详细介绍
原因概述“IPython is not defined” 说明你在浏览器里执行的这段 JavaScript 依赖旧版 Jupyter(classic notebook)前端暴露的全局对象 IPython,但当前环境并没有这个对象。常见场景:- 在 JupyterLab、Colab、nteract、Voila、导出的纯 HTML/nbviewer 中运行含 JS 的单元格- 在 classic notebook 中直接用 IPython 变量,但脚本加载顺序导致尚未加载 namespace- 版本不匹
2025-10-26 00:30:00
1054
原创 【Python-机器学习】比较线性回归 vs 多项式回归
太棒了 💡 —— 这是非常经典的对比:**线性回归**只能拟合“直线趋势”, 而**多项式回归**可以通过构造非线性特征,让模型更灵活地捕捉“弯曲规律”。 下面我给你一份完整、可运行的 **Python + Matplotlib 可视化对比代码**: 同一张图展示“线性回归”与“多项式回归”的拟合效果。 ---import numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import
2025-10-25 03:00:00
222
原创 【Python-机器学习】回归的线性模型
非常好!👏 你现在问的“**用于回归的线性模型(Linear Models for Regression)**”是机器学习入门阶段最核心的概念之一。 我们一步一步讲,从**直觉 → 数学公式 → 拟合过程 → 实际代码 → 扩展与改进**来全方位解释。---## 🧩 一、直觉理解:用“一条线”去逼近数据的趋势**场景比喻:**我们手上有一堆散点(例如房价、温度、身高、GDP...),它们大致沿着某个方向分布。 想要建一个模型,输入一个特征 \(x\),输出预测值 \(y\)。最
2025-10-25 01:00:00
845
原创 【Python-机器学习】线性函数介绍
学机器学习,那理解“线性函数”是非常关键的一步,因为很多模型(例如线性回归、逻辑回归、线性 SVM、感知机等)都以它为基础。我们来一步步从直觉到数学再到实际用法说明。---## 🧩 一、什么是线性函数**定义:** 在最简单的一维情况下,线性函数的形式是:非常好
2025-10-24 01:00:00
542
原创 【Python-机器学习】为什么要进行拟合?按直觉→例子→数学→实践的顺序解释
# 为什么要进行拟合?下面按直觉→例子→数学→实践的顺序解释。## 拟合是什么- 拟合(fit)= 用已有的样本数据学出一个“规则”(模型参数),让模型把输入 \(x\) 映射到输出 \(y\)。- 目的是不仅在已知数据上表现好,更要对“没见过的新数据”也能做出合理预测(泛化)。直觉比喻:用一条线/一条边界去“贴近”数据的走势或分类形状,但不过度追每个数据点的噪声。## 为什么需要拟合- 预测:给你一个新样本,模型能输出预测(回归值或类别)。- 概括规律:把大量样本“压缩”为少量参数
2025-10-24 00:45:00
477
原创 【Python-机器学习】plt.plot(X,y,‘o‘) 这一句是在干嘛,详细介绍一下
下面把这句的作用、参数含义、常见用法与易错点讲清楚。是什么- plt.plot(X, y, 'o') 用 Matplotlib 画二维数据的点。- 'o' 是“格式字符串”(fmt),表示“圆点标记”。仅写 'o' 时,默认不连接线段,只画一个个圆点。- 等价写法:plt.plot(X, y, linestyle='None', marker='o')参数含义与形状要求- X:横轴数据(通常是一维数组,长度为 n)- y:纵轴数据(同样长度为 n)- 'o':格式字符串,语法是 "[co
2025-10-23 00:45:00
580
原创 【Python-机器学习】mglearn.plots.plot_knn_classification(n_neighbors=1) plt.show() 这两句详细介绍
【Python-机器学习】
2025-10-23 00:45:00
788
原创 【Python-机器学习】可直接运行的完整示例,演示如何用 sklearn 生成并“画出”四类常见玩具数据集,分类:make_blobs(多簇高斯)、make_moons(两月牙)、make_circ
下面给你一份可直接运行的完整示例,演示如何用 sklearn 生成并“画出”四类常见玩具数据集:- 分类:make_blobs(多簇高斯)、make_moons(两月牙)、make_circles(同心圆)- 回归:make_regression(线性带噪声)我写了两个小工具函数,分别用于分类散点图和回归散点+拟合直线,方便你以后复用。# 安装依赖(如未安装)# pip install scikit-learn matplotlib numpyimport numpy as npim
2025-10-23 00:30:00
682
原创 【Python-机器学习】mglearn.datasets.make_forge():小型二维二分类玩具数据 mglearn.datasets.make_wave():一维回归玩具数据 这两个是什么?
下面把这两个“玩具数据集”分别说明清楚,并给你可直接运行的示例。# 它们是什么- mglearn.datasets.make_forge() - 小型二维二分类数据集,用来演示分类算法与决策边界。 - 输出: - X:形状 (n_samples, 2) 的二维特征(n_samples 很小,几十个点) - y:形状 (n_samples,) 的类别标签(0/1) - 特点:点数少、可视化清晰、类间有一定重叠,适合对比不同分类器的边界形状与过/欠拟合。 - 常见用法:快速
2025-10-22 01:00:00
443
原创 【Python-机器学习】mglearn是什么模块?
mglearn 是什么- mglearn 是一本教材配套的“教学辅助”Python 包,主要用于可视化和演示 scikit-learn 的概念与算法,来自《Introduction to Machine Learning with Python》(作者 Andreas C. Müller, Sarah Guido)。- 它不是通用的机器学习库,更多是为教学示例准备的工具集合:生成玩具数据集、画示意图、封装一些常用的可视化函数。它包含什么- 数据集辅助 - mglearn.datasets.
2025-10-22 00:30:00
361
原创 【Python-机器学习】mglearn.discrete_scatter(X[:,0],X[:,1],y) plt.legend([“Class 0“,“Class 1“],loc=4) 这两句解释
下面分别解释这两行在做什么,以及一些使用细节与等价写法。1) mglearn.discrete_scatter(X[:,0], X[:,1], y)- 作用:画二维散点图,并按类别 y 把点分组,给不同类别用不同的颜色与点型(marker)。- 参数含义: - X[:, 0]:X 的第 1 列,作为横轴(第一特征) - X[:, 1]:X 的第 2 列,作为纵轴(第二特征) - y:类别标签(如 0/1),函数会按 y 的唯一取值分组绘制- 效果:相当于对每个类别做一次 plt.sca
2025-10-22 00:15:00
379
原创 【Python-机器学习】# forge数据集 X,y=mglearn.datasets.make_forge() #print(X) #forge数据集绘制 mglearn.discrete_sc
要把图真正画出来,关键是补齐 import、安装依赖,并在合适的环境里调用显示函数。下面给你一个可直接运行的最小示例。最小可运行示例(Jupyter 或脚本均可)```python# 如未安装:pip install mglearn scikit-learn matplotlib numpyimport mglearnfrom mglearn.datasets import make_forgeimport matplotlib.pyplot as plt# 生成 forge 玩具数据集
2025-10-21 00:45:00
234
原创 【Python-机器学习】AttributeError: module ‘numpy‘ has no attribute ‘linespace‘ 报这个错怎么解决?
问题原因- 打错函数名了:应该是 np.linspace,而不是 np.linespace。NumPy 里没有 linespace 这个属性,所以报 AttributeError: module 'numpy' has no attribute 'linespace'。正确写法```pythonline = np.linspace(-3, 3, 1000).reshape(-1, 1)```顺带检查两点- 确保你有正确导入:import numpy as np- 确保没有把 np 这个名
2025-10-21 00:00:00
394
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅