一.八皇后简述:
问题表述为:在8×8格的国际象棋上摆放8个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。高斯认为有76种方案。1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。如果经过±90度、±180度旋转,和对角线对称变换的摆法看成一类,共有42类。计算机发明后,有多种计算机语言可以编程解决此问题。
二.Java代码实现:
编写3个方法 1.放置第n个皇后 2.检测待放置的皇后是否与之前的皇后冲突 3.打印棋盘package chzu.wzs;
public class Queue8 {
int O=0;
int count=0;
int max=8;
int[] array=new int[max];
public static void main(String[] args) {
Queue8 queue8=new Queue8();
//开始放置第一个皇后(n=0)
queue8.lay(0);
System.out.println("执行方法"+queue8.O+"次!");
}
//放置第n个皇后
private void lay(int n){
//++O;
if(n==max){
System.out.println("解法"+(++count)+":");
print();
return;
}
//依次放入皇后,并且判断是否冲突
for(int i=0;i<max;i++){
array[n]=i;
if(judge(n)){
lay(n+1);
}
}
}
//检测待放置的皇后是否与之前的皇后冲突
private boolean judge(int n){
++O;
for(int i=0;i<n;i++){
if(array[i]==array[n]||Math.abs(n-i)==Math.abs(array[n]-array[i])){
return false;
}
}
return true;
}
//打印棋盘
private void print(){
for (int i : array) {
System.out.print(i+" ");
}
System.out.println();
for(int i=0;i<max;i++){
for(int j=0;j<max;j++) {
if(j==array[i]){
System.out.print("\33[32;4m"+"Q"+"\033[0m ");
}else {
System.out.print("* ");
}
}
System.out.println();
}
System.out.println();
}
}