以下是从0到1构建企业级Java AI开发工具的超详细实践指南,涵盖技术选型、核心架构、关键模块及代码示例:
一、核心目标与技术选型
目标:构建稳定、高并发、可扩展的Java AI工具,支持大模型集成、本地推理、企业级API服务。
技术栈:
- 框架:Spring Boot 3.x(微服务基础) + Spring AI(AI集成框架)
- 模型推理:DeepSeek-V3(国产高性能MoE模型)或 Llama 3(本地部署)
- 加速计算:OpenJDK Panama项目(GPU/NPU加速) + ONNX Runtime(推理优化)
- 企业级能力:Spring Security(鉴权)、Resilience4j(熔断降级)、Prometheus(监控)
- 开发工具:Maven/Gradle、Docker、Kubernetes
二、环境准备与初始化
1. 项目初始化
# 使用Spring Initializr创建项目(选择依赖:Spring Web, Spring AI, Spring Security)
mvn archetype:generate -DgroupId=com.enterprise.ai -DartifactId=java-ai-tool -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false
2. 依赖配置(pom.xml)
<!-- Spring AI集成 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-ollama-spring-boot-starter</artifactId>
<version>1.0.0</version>
</dependency>
<!-- ONNX Runtime加速 -->
<dependency>
<groupId>com.microsoft.onnxruntime</groupId>
<artifactId>onnxruntime</artifactId>
<version>1.16.0</version>
</dependency>
<!-- 本地模型引擎(Jlama替代方案) -->
<dependency>
<groupId>com.jlama</groupId>
<artifactId>jlama-core</artifactId>
<version>0.8.0</version>
</dependency>
三、核心模块开发
1. 大模型集成(以Spring AI为例)
// 配置模型连接(application.yml)
spring:
ai:
ollama:
base-url: http://localhost:11434
model: llama3
// 服务层代码
@Service
public class AIService {
private final OllamaChatClient chatClient;
public AIService(OllamaChatClient chatClient) {
this.chatClient = chatClient;
}
public String generateText(String prompt) {
return chatClient.call(prompt);
}
}
2. 本地模型推理(Jlama引擎集成)
// 加载本地模型
public class LocalModelEngine {
private static Model model;
@PostConstruct
public void init() throws