易康eCognition9.0分类|规则集和机器学习的方法的面向对象的多尺度分割分类

前言:因为第一次接触,所以非常非常细致,,

 第一步:File—new project:(新建一个project,可以保存)

 

 第二步:选择影像(注意路径一定纯英文)

第三步:双击修改波段名称,方便后续计算

第四步:修改波段显示:按需求进行波段组合,还可以进行显示拉伸

 

 

 进行多尺度分割

第五步:新建工程树进行分类,右键Precess Tree,选择Append New

第六步:进行多尺度分类,Algorithm选择多尺度分类方式(如图

第七步:修改尺度大小

第八步:点击Execute进行计算,得到如下结果

进行规则集分类

第九步:在分割的基础上,基于规则分类,这里以水体为例子,首先计算NDWI

点击Feature Values 的 Customized 的 “Arithmetic Feature”,输入NDWI计算公式(Green-nir)/(Green+nir),记得在Mean里选择。

第十步:观察对象的特征阈值,点击水体的对象,看NDWI的范围;确定后进行分类。

第十一步:进行分类,右键Precess Tree,选择Append New。选择“assign class” ,并修改右侧的Use class 的Value为“water”,弹出窗口内选择蓝色。

第十二步:点击“Condition”,进行规则设置。

第十三步:value1找到并选择NDWI,“>=”,value2选择“0.5”。

第十四步:得到规则法的水体结果

第十五步:合并相同类别的对象,依旧新建方法,选择“merge region”,Class filter选择“water”,进行运算。得到结果。

进行监督法分类:前几步的多尺度分割和上面一致,就不重新复制了。做完多尺度分割之后,进行如下步骤

第四步:进行样本选择,点击“Classification”——“Samples”——“Sample Editor”.

第五步:再次点击“Classification”——“Samples”,选择“Select Samples”,“Active class”进行分类样本的选项(双击就是选上了,每个类别都要选)。

第六步:计算样本特征,点击“Nearest Neighbor”——“Feature Space Optimization”

第七步:选择计算特征,把计算的“NDVI”、“NDWI”、原始波段等信息双击进行选择,我选了8个。

第八步:进行特征优化

第九步:计算每个类别的特征,点击“Select Classes”,选择进行分类的类别

第十步:双击类别可以看到刚刚计算的各特征

第十一步:进行监督分类,分类方法选择“classification”,右侧加入所分类别,点击“Execute”,并得到分类结果。

 计算植被和水体的面积占比

第十二步:进行植被和水体的面积占比的计算,方法选择“Update variable”,右侧的“Variable”是变量名称,先计算所有像素的个数,“Assignment”选择“by feature”

Feature选择“Number of pixels in scene”

第十三步:计算水体像素的个数,方法选择“Update variable”,右侧的“Variable”是变量名称,先计算所有像素的个数,“Assignment”选择“by feature”

Feature选择“Area of classified objects”,再“Class”选择“water”。

第十四步:计算水体像素的占比,方法选择“Update variable”,右侧的“Variable”是变量名称,先计算所有像素的个数,“Assignment”选择“by expression”,输入表达式。

第十五步:得到两种分类方式的植被和水体的面积占比;

1.规则类:

2.监督分类:

结束!

最后:感觉现在用易康完成分类的很少啦,但不乏一些学子需要完成课程实验 ,在此给自己记录!希望能帮到大家!

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值