题目:最后一块石头的重量2
题解:
1)如果要碰撞的最后数值最小,应该将这对石头尽可能分成两堆质量接近的。
2)和分割等和子集思路相同,只是最后比较的步骤有差别
3)物品的价值和重量相等,尽可能装满一个背包的重量,当然装不满也是可以的。
代码:
class Solution(object):
def lastStoneWeightII(self, stones):
"""
:type stones: List[int]
:rtype: int
"""
target = sum(stones)
target /= 2
dp = [0] * (target + 1)
for i in range(len(stones)):
j = target
while j >= stones[i]:
dp[j] = max(dp[j], dp[j - stones[i]] + stones[i])
j -= 1
return sum(stones) - 2*dp[target]
题目:目标和
题解:
1)根据推导,要寻找的是能装满尺寸为res的背包有多少种情况。
2)dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法。
3)根据举例,求组合问题的递归公式是把所有dp[j - nums[i]] 累加起来。
代码:
class Solution(object):
def findTargetSumWays(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: int
"""
# nums = [100]
# target = -200
res = target + sum(nums)
if res % 2 == 1:
return 0
res = (target + sum(nums)) / 2
if abs(target) > sum(nums):#注意题目中条件,每一个数都是正整数
return 0
dp = [0 for _ in range(res + 1)]
dp[0] = 1
for i in range(len(nums)):
for j in range(res, nums[i] - 1, -1):
dp[j] += dp[j-nums[i]]
return dp[res]
题目:一和零
题解:
1)dp[i][j]:表示i个0,j个1的背包,最多背dp[i][j]个东西。
代码:
class Solution(object):
def findMaxForm(self, strs, m, n):
"""
:type strs: List[str]
:type m: int
:type n: int
:rtype: int
"""
dp = [[0] * (n + 1) for _ in range(m + 1)] # 默认初始化0
# 遍历物品
for str in strs:
ones = str.count('1')
zeros = str.count('0')
# 遍历背包容量且从后向前遍历!
for i in range(m, zeros - 1, -1):
for j in range(n, ones - 1, -1):
dp[i][j] = max(dp[i][j], dp[i - zeros][j - ones] + 1)
return dp[m][n]