题干:
给你一个非负整数数组 nums
,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标,如果可以,返回 true
;否则,返回 false
。
示例 1:
输入:nums = [2,3,1,1,4] 输出:true 解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4] 输出:false 解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
解法1:遍历数组,标记所有能到达的点
func canJump(nums []int) bool {
n := len(nums)
if n == 0 {
return false
}
dp := make([]bool, n)
dp[0] = true // 初始位置是可以到达的
for i := 0; i < n; i++ {
if dp[i] {
jump := nums[i]
for j := i + 1; j <= i+jump && j < n; j++ {
dp[j] = true
}
}
}
return dp[n-1]
}
解析1:
1.每个元素,都遍历一次它跳跃范围内的点,并全标记为true。
2.对于所有是true的元素,继续遍历其能跳跃范围内的点,继续标记true。
3.最后除了最后一个元素,已尝试将所有的元素全遍历,标记所有能跳跃的点。
4.最后直接输出下标为n-1的值,为true就表示能到达,false就表示到达不了。
解法2:贪心算法
func canJump(nums []int) bool {
maxReach := 0
for i := 0; i < len(nums); i++ {
if i > maxReach {
return false // 当前索引比能达索引大,无法前进
}
maxReach = max(maxReach, i + nums[i])
if maxReach >= len(nums) - 1 {
return true // 能够成功抵达或者超过最后一个位置
}
}
return false
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
测试用例1:
[2, 5, 0, 0]
:
-
初始:
maxReach = 0
,表示最远能到达的位置
-
位置 0:
nums[0] = 2
,因此从起始位置我们可以到达的最远位置为0 + 2 = 2
- 更新
maxReach = max(0, 2) = 2
-
位置 1:
nums[1] = 5
,此时最远能到达的位置为1 + 5 = 6
- 更新
maxReach = max(2, 6) = 6
-
maxReach >= len(nums) - 1 ,返回true
测试用例2:
[1, 0, 6, 0]
-
初始
maxReach = 0
,表示当前能够到达的最远位置。
-
位置 0
- 当前位置:
i = 0
- 当前值:
nums[0] = 1
- 计算:
maxReach = max(maxReach, i + nums[i]) = max(0, 0 + 1) = 1
- 结果:
maxReach = 1
- 当前位置:
-
位置 1
- 当前位置:
i = 1
- 当前值:
nums[1] = 0
- 计算:
maxReach = max(maxReach, i + nums[i]) = max(1, 1 + 0) = 1
- 结果:
maxReach = 1
- 当前位置:
-
位置 2
- 当前位置:
i = 2
- 当前值:
nums[2] = 6
- 检查:
i > maxReach
,即2 > 1
,说明当前位置2
不可达。
- 当前位置:
- 结果:返回
false
,因为无法到达位置2
。
-------------------------------------------------无情的分割线--------------------------------------------------------------
吐槽:
被自己蠢哭,我一开始以为每个元素表示该位置只能跳这么远,感觉很简单,就随便写了个这个。
然后发现有用例过不了:
然后回去仔细读题,"数组中的每个元素代表你在该位置可以跳跃的最大长度。"
哦,懂了,好吧,每个元素能跳跃的距离是1~k。
力扣是这样的,不仔细读题,从根上就错了。