吃瓜教程task05——支持向量机

1.间隔与支持向量

1.1算法原理

1.2.超平面

1.3.几何间隔

1.4.支持向量机

2.软间隔

1.间隔与支持向量

1.1算法原理

对于线性可分数据集,找距离正负样本都最远的超平面。相比于感知机,其解唯一。

1.2.超平面

n为空间的超平面(w^Tx+b=0,w,x\in R^n)

超平面方程不唯一(扩大倍数);

法向量w和位移项b确定一个唯一超平面;

法向量w垂直于超平面;

法向量w指向的一半空间为正,另一半为负空间;

任意点x到超平面的距离公式为

r=\frac{|w^Tx+b|}{||w||}

1.3几何间隔

对于给定数据集X和超平面w^Tx+b=0,

定义数据集X中的任意一个样本点(x_i,y_i),y_i\in\{-1,1\},i=1,2,...,m关于超平面的几何间隔为\gamma_i=\frac{y_i(w^Tx_i+b)}{||w||}

正确分类时,\gamma_i>0,错误分类时\gamma_i<0

间隔最小的作为几何间隔。\gamma=\min_{i=1,2,...,m} \gamma_i

1.4支持向量机

【模型】对于线性可分数据集,求得几何间隔\gamma达到最大的超平面,再套上sign函数实现分类功能

【策略】带不等式约束的优化问题

以下问题解不唯一只有通解:

固定分子,令y_{\min}(w^Tx_{min}+b)=1,能使得其成立的\alpha 有且仅有一个。因此将问题转化为

转化为最小化问题且方便求解,最终模型为:

推荐阅读 王书宁 译《凸优化》,王燕军.《最优化基础理论与方法(第二版)》

【算法】拉格朗日对偶

凸优化问题:

对于约束优化问题:min f(x)

        g_i(x)\ge 0,i=1,2,...,m

             h_j(x)=0,j=1,2,...,n

目标函数f(x),约束集合为凸集。

拉格朗日对偶:

拉格朗日对偶函数,L(x,\mu,\lambda)关于x的下确界:

对偶函数的性质:

1.无论原问题是否为凸优化问题,其对偶函数恒为凹函数.

2.当\mu \ge0时,对偶问题构成了上述优化问题最优值p^*的下界。即

\Gamma(\mu,\lambda)\le p^*

对偶问题:

 d*=\max\Gamma(\mu,\lambda)

 ”弱对偶性成立“:d^*\le p*

“强对偶性成立”:d^*=p^*;

一般问题 ,满足像"Slater"等特定限制条件,强对偶性成立。

凸优化问题,通过KKT条件推出。

支持向量机:

L(w,b,\alpha)为关于\hat{w}的凸函数

L(w,b,\alpha)的下确界(对偶函数)为:

因此对偶问题为:

2.软间隔与正则化

2.1算法原理

线性不可分的情形存在,允许支持向量机犯错

2.2软间隔

【模型】

\xi_i为松弛变量

允许部分样本(尽可能少的异常样本)犯错,即不满足:

将必须严格执行约束条件转化为具有一定灵活性的“损失”:

有此来保证不满足约束条件的样本尽可能少。得到模型

合页损失替换掉l_{0/1}(非凸,不连续,数学性质不如l_{hinge}):

则问题变为:

2.3支持向量回归(SVR)

【原理】

带上的样本不计算损失,以偏离袋子的距离作为损失,最小化损失:间隔带从样本最密集的地方穿过。

【模型】

l_{\epsilon}(z)=\xi_i

\frac{1}{2}||w||^2为L2正则项。

导出对偶问题引入核函数,C为调节损失权重的常数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值