- 博客(4)
- 问答 (2)
- 收藏
- 关注
原创 tensorboard不是内部或外部命令,解决方法
1、先激活保存log时所用的环境(特别提醒,一定要观察运行命令tensorboard --logdir=地址 时的环境,它需要与保存log时所用的环境一致)。2、在Anaconda Prompt中先进入日志存放的目录(否则很可能找不到文件)。3、运行TensorBoard,并将日志的地址只想程序日志输出地址,即输入命令:tensorboard –logdir=地址4、复制网址到浏览器上,并查看详细步骤,请看图...
2020-06-13 16:26:23 1619 1
原创 学习神经网络(深度学习)电脑的配置要求
学习神经网络(深度学习)电脑的配置要求个人电脑配置与使用感受(电脑小白)我目前所使用的电脑的配置是(1)CPU:i5-9300H(2)GPU:GTX1650-4G(3)显存:8G(4)固态硬盘:1T(5)屏幕大小:15.6英寸现在用tensorflow-gpu版跑VGG16神经网络时:CPU还行,37%左右;显存直接到了85%左右;GPU更是干到了93%。如果再跑接下来的两个经典神经网络Inception10和ResNet18估计是够呛。电脑配置个人建议(电脑小白,仅供参考)**(1)*
2020-06-09 12:12:00 22296 9
原创 AttributeError: module 'pandas.core' has no attribute 'categorical'的解决
module ‘pandas.core’ has no attribute 'categorical’的解决1、报错代码2、代码寻错发现pandas中没有categorical包,猜测是否因为pandas更新后没有categorical包,考虑具有与原来categorical相类似功能的包,尝试dtyples包,查看其dtyples模块的代码,果不其然(这种方法仅供参考,存在巧合)。3、代码修正...
2020-05-10 13:17:31 886
原创 如何解决python程序在GPU上运行的相关问题
如何使python程序在GPU上运行问题在python中对Xgboost使用GridSearchCV进行调参需要30多分钟,之后在网页上看到可以使python程序在GPU上运行,从而加快速度。看了一些帮助后直接在运行该部分前插入import os和os.environ[“CUDA_VISIBLE_DEVICES”] = "0"两行代码,但是并没有明显效果。CPU使用率仍是高达100%,温度...
2020-05-02 09:51:38 3677 9
空空如也
tensorflow2.x 如何用已经保存的模型参数直接预测
2020-09-11
python程序指定GPU上运行后但GPU使用率仍然很低(只有5%)。
2020-05-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人