69.x的平方根
题目
给你一个非负整数 x
,计算并返回 x
的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5)
或者 x ** 0.5
。
示例 1:
输入:x = 4 输出:2
示例 2:
输入:x = 8 输出:2 解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。
代码(二分查找)
class Solution {
public int mySqrt(int x) {
//可能结果范围在[0,x]
int left = 0;
int right = x;
//ans是返回的结果
int ans = -1;
int mid;
while(left <= right){
mid = left + (right-left) / 2;
//mid太小了,往右区间走走
if((long)mid * mid < x){ //(long)得写,不然有个测试点过不去
//比如x=5时,mid=2,4小于5,但此时的ans应该把2记录下来
//因为2已经是满足条件的最大整数了,如果不记录,mid最小也是3,就找不到结果了。
ans = mid; //保证就算没有满足的mid*mid == x,最大的ans也能找到
left = mid + 1;
}
//mid太大了,往左区间走走
else if((long)mid * mid > x){
right = mid - 1;
}
//正好找到了ans*ans = x,直接结束循环
else{
ans = mid;
break;
}
}
return ans;
}
}
367.有效的完全平方数
题目
给你一个正整数 num
。如果 num
是一个完全平方数,则返回 true
,否则返回 false
。
完全平方数 是一个可以写成某个整数的平方的整数。换句话说,它可以写成某个整数和自身的乘积。
不能使用任何内置的库函数,如 sqrt
。
示例 1:
输入:num = 16 输出:true 解释:返回 true ,因为 4 * 4 = 16 且 4 是一个整数。
示例 2:
输入:num = 14 输出:false 解释:返回 false ,因为 3.742 * 3.742 = 14 但 3.742 不是一个整数。
代码(二分查找)
class Solution {
public boolean isPerfectSquare(int num) {
//查找区间定在[0,num]
int left = 0;
int right = num;
//初始结果为false
boolean flag = false;
int mid;
while(left <= right){
mid = left + (right - left) / 2;
//mid大了,right往小区间走
if((long)mid*mid > num){
right = mid - 1;
}
//mid小了,left往大区间走
else if((long)mid*mid < num){
left = mid + 1;
}
//mid找到了,说明是平方数
else{
flag = true;
break;
}
}
return flag;
}
}