力扣Hot100题目解析:动态规划与数组 —— 最大子序和
题目描述
给定一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
解题思路讲解(动态规划)
这道题目非常经典,是动态规划的入门题。我们要找出一段连续的子数组,使它们的和最大。
步骤分解
- 定义状态:
- 用
dp[i]表示以第i个元素结尾的最大子数组和。
- 用
- 状态转移方程:
- 每次可以选择:要么把前面的和加上当前元素,要么只要当前元素(如果前面的和为负数,不如只从当前元素重新开始)。
- 公式:
dp[i] = max(dp[i-1] + nums[i], nums[i])
- 初始化和遍历:
- 第一个元素的最大和就是它自己。
- 依次遍历数组,套用公式更新。
- 空间优化:
- 其实我们只需要前一个状态的值,可以用一个变量代替数组,降低空间复杂度。
- 结果:
- 记录所有 dp[i] 的最大值即为答案。
Java代码实现
public class Solution {
/**
* 求解最大子序和
* @param nums 输入数组
* @return 最大子序和
*/
public int maxSubArray(int[] nums) {
// 当前子数组的最大和,初始化为数组第一个元素
int currSum = nums[0];
// 全局最大子数组和
int maxSum = nums[0];
// 从第二个元素开始遍历
for (int i = 1; i < nums.length; i++) {
// 如果当前currSum为负,则从当前元素重新开始,否则继续累加
currSum = Math.max(nums[i], currSum + nums[i]);
// 更新全局最大值
maxSum = Math.max(maxSum, currSum);
}
return maxSum;
}
}
代码注释说明
currSum保存以当前位置结尾的最大子数组和。- 每一步都判断:是累加当前元素更大,还是直接从当前元素开始更大。
maxSum始终保存发现的最大子数组和。
希望通过本题解析,你能理解动态规划的核心思想,掌握最大子序和问题的解法!
文章标签:力扣,算法,Java,动态规划,数组,面试
213

被折叠的 条评论
为什么被折叠?



