【论文阅读之点云Mixup的应用】PointCutMix: Regularization Strategy for Point Cloud Classification
灵感:Mixup方法在图像很成功,受CutMixup、PointMixup启发,提出对点云局部的裁剪和粘贴问题:由于点云的不规则性,无法像图像像素对齐PointMixup在混合时丢失了局部语义信息方法:采用EMD将目标点云一一对应提出了两种替换策略PointCutMix-R和PointCutMix-K在本文中,我们提出了一种简单有效的点云数据增强方法,名为 PointCutMix,以缓解这些问题。它找到两个点云之间的最佳分配,并通过用最佳分配对替换一个样本中的点来生成新的训练数据。
原创
2023-06-09 15:30:38 ·
864 阅读 ·
1 评论