目录
Kafka简介
消息队列
- 消息队列——用于存放消息的组件
- 程序员可以将消息放入到队列中,也可以从消息队列中获取消息
- 很多时候消息队列不是一个永久性的存储,是作为临时存储存在的(设定一个期限:设置消息在MQ中保存10天)
- 消息队列中间件:消息队列的组件,例如:Kafka、Active MQ、RabbitMQ、RocketMQ、ZeroMQ
Kafka的应用场景
-
异步处理
- 可以将一些比较耗时的操作放在其他系统中,通过消息队列将需要进行处理的消息进行存储,其他系统可以消费消息队列中的数据
- 比较常见的:发送短信验证码、发送邮件
-
系统解耦
- 原先一个微服务是通过接口(HTTP)调用另一个微服务,这时候耦合很严重,只要接口发生变化就会导致系统不可用
- 使用消息队列可以将系统进行解耦合,现在第一个微服务可以将消息放入到消息队列中,另一个微服务可以从消息队列中把消息取出来进行处理。进行系统解耦
-
流量削峰
- 因为消息队列是低延迟、高可靠、高吞吐的,可以应对大量并发
-
日志处理
- 可以使用消息队列作为临时存储,或者一种通信管道
消息队列的两种模型
- 生产者、消费者模型
- 生产者负责将消息生产到MQ中
- 消费者负责从MQ中获取消息
- 生产者和消费者是解耦的,可能是生产者一个程序、消费者是另外一个程序
- 消息队列的模式
- 点对点:一个消费者消费一个消息
- 发布订阅:多个消费者可以消费一个消息
Kafka中的重要概念
- broker
- Kafka服务器进程,生产者、消费者都要连接broker
- 一个集群由多个broker组成,功能实现Kafka集群的负载均衡、容错
- producer:生产者
- consumer:消费者
- topic:主题,一个Kafka集群中,可以包含多个topic。一个topic可以包含多个分区
- 是一个逻辑结构,生产、消费消息都需要指定topic
- partition:Kafka集群的分布式就是由分区来实现的。一个topic中的消息可以分布在topic中的不同partition中
- replica:副本,实现Kafkaf集群的容错,实现partition的容错。一个topic至少应该包含大于1个的副本
- consumer group:消费者组,一个消费者组中的消费者可以共同消费topic中的分区数据。每一个消费者组都一个唯一的名字。配置group.id一样的消费者是属于同一个组中
- offset:偏移量。相对消费者、partition来说,可以通过offset来拉取数据
- group.id:消费者组的概念,可以在一个消费组中包含多个消费者。如果若干个消费者的group.id是一样的,表示它们就在一个组中,一个组中的消费者是共同消费Kafka中topic的数据。
- Kafka是一种拉消息模式的消息队列,在消费者中会有一个offset,表示从哪条消息开始拉取数据
消费者组
- 一个消费者组中可以包含多个消费者,共同来消费topic中的数据
- 一个topic中如果只有一个分区,那么这个分区只能被某个组中的一个消费者消费
- 有多少个分区,那么就可以被同一个组内的多少个消费者消费
幂等性
-
生产者消息重复问题
- Kafka生产者生产消息到partition,如果直接发送消息,kafka会将消息保存到分区中,但Kafka会返回一个ack给生产者,表示当前操作是否成功,是否已经保存了这条消息。如果ack响应的过程失败了,此时生产者会重试,继续发送没有发送成功的消息,Kafka又会保存一条一模一样的消息
-
在Kafka中可以开启幂等性
- 当Kafka的生产者生产消息时,会增加一个pid(生产者的唯一编号)和sequence number(针对消息的一个递增序列)
- 发送消息,会连着pid和sequence number一块发送
- kafka接收到消息,会将消息和pid、sequence number一并保存下来
- 如果ack响应失败,生产者重试,再次发送消息时,Kafka会根据pid、sequence number是否需要再保存一条消息
- 判断条件:生产者发送过来的sequence number 是否小于等于 partition中消息对应的sequence
Kafka集群搭建
前期准备:zookeeper必须搭建完毕
kafka集群部署
-
上传并解压安装包
[lili@hadoop102 software]$ tar -zxvf kafka_2.11-0.11.0.0.tgz -C /opt/module/
-
修改解压后的文件名称
[lili@hadoop102 software]$ mv kafka_2.11-0.11.0.0/ kafka
-
在/opt/module/kafka目录下创建logs文件夹
作为kafka运行日志存放的文件
[lili@hadoop102 kafka]$ mkdir logs
-
修改kafka配置文件
[lili@hadoop102 kafka]$ vim config/server.properties # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # see kafka.server.KafkaConfig for additional details and defaults ############################# Server Basics ############################# # The id of the broker. This must be set to a unique integer for each broker. #broker唯一编号,不能重复 broker.id=0 # Switch to enable topic deletion or not, default value is false #删除topic功能 delete.topic.enable=true ############################# Socket Server Settings ############################# # The address the socket server listens on. It will get the value returned from # java.net.InetAddress.getCanonicalHostName() if not configured. # FORMAT: # listeners = listener_name://host_name:port # EXAMPLE: # listeners = PLAINTEXT://your.host.name:9092 #listeners=PLAINTEXT://:9092 # Hostname and port the broker will advertise to producers and consumers. If not set, # it uses the value for "listeners" if configured. Otherwise, it will use the value # returned from java.net.InetAddress.getCanonicalHostName(). #advertised.listeners=PLAINTEXT://your.host.name:9092 # Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details #listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL # The number of threads that the server uses for receiving requests from the network and sending responses to the network #处理网路请求的线程数量 num.network.threads=3 # The number of threads that the server uses for processing requests, which may include disk I/O #用来处理磁盘IO的线程数量 num.io.threads=8 # The send buffer (SO_SNDBUF) used by the socket server #Socket(套接字)可以看成是两个网络应用程序进行通信时,各自通信连接中的端点,这是一个逻辑上的 #概念。它是网络环境中进程间通信的API(应用程序编程接口),也是可以被命名和寻址的通信端点,使 #用中的每一个套接字都有其类型和一个与之相连进程。通信时其中一个网络应用程序将要传输的一段信 #息写入它所在主机的 Socket中,该 Socket通过与网络接口卡(NIC)相连的传输介质将这段信息送到另 #外一台主机的 Socket中,使对方能够接收到这段信息。 Socket是由IP地址和端口结合的,提供向应 #用层进程传送数据包的机制 [2] 。 #发送套接字的缓冲区大小 socket.send.buffer.bytes=102400 # The receive buffer (SO_RCVBUF) used by the socket server #接收套接字的缓冲区大小 socket.receive.buffer.bytes=102400 # The maximum size of a request that the socket server will accept (protection against OOM) #请求套接字的缓冲区大小 socket.request.max.bytes=104857600 ############################# Log Basics ############################# # A comma seperated list of directories under which to store log files #kafka运行日志存放的路径 log.dirs=/opt/module/kafka/logs # The default number of log partitions per topic. More partitions allow greater # parallelism for consumption, but this will also result in more files across # the brokers. #topic在当前broker上的分区个数 num.partitions=1 # The number of threads per data directory to be used for log recovery at startup and flushing at shutdown. # This value is recommended to be increased for installations with data dirs located in RAID array. #用来恢复和清理data下数据的线程数量 num.recovery.threads.per.data.dir=1 ############################# Internal Topic Settings ############################# # The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state" # For anything other than development testing, a value greater than 1 is recommended for to ensure availability such as 3. offsets.topic.replication.factor=1 transaction.state.log.replication.factor=1 transaction.state.log.min.isr=1 ############################# Log Flush Policy ############################# # Messages are immediately written to the filesystem but by default we only fsync() to sync # the OS cache lazily. The following configurations control the flush of data to disk. # There are a few important trade-offs here: # 1. Durability: Unflushed data may be lost if you are not using replication. # 2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush. # 3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to exceessive seeks. # The settings below allow one to configure the flush policy to flush data after a period of time or # every N messages (or both). This can be done globally and overridden on a per-topic basis. # The number of messages to accept before forcing a flush of data to disk #log.flush.interval.messages=10000 # The maximum amount of time a message can sit in a log before we force a flush #log.flush.interval.ms=1000 ############################# Log Retention Policy ############################# # The following configurations control the disposal of log segments. The policy can # be set to delete segments after a period of time, or after a given size has accumulated. # A segment will be deleted whenever *either* of these criteria are met. Deletion always happens # from the end of the log. # The minimum age of a log file to be eligible for deletion due to age #segment文件保留的最长时间,超时将被删除 log.retention.hours=168 # A size-based retention policy for logs. Segments are pruned from the log as long as the remaining # segments don't drop below log.retention.bytes. Functions independently of log.retention.hours. #log.retention.bytes=1073741824 # The maximum size of a log segment file. When this size is reached a new log segment will be created. log.segment.bytes=1073741824 # The interval at which log segments are checked to see if they can be deleted according # to the retention policies log.retention.check.interval.ms=300000 ############################# Zookeeper ############################# # Zookeeper connection string (see zookeeper docs for details). # This is a comma separated host:port pairs, each corresponding to a zk # server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002". # You can also append an optional chroot string to the urls to specify the # root directory for all kafka znodes. #配置连接Zookeeper集群地址 zookeeper.connect=hadoop102:2181,hadoop103:2181,hadoop104:2181 # Timeout in ms for connecting to zookeeper zookeeper.connection.timeout.ms=6000 ############################# Group Coordinator Settings ############################# # The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance. # The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms. # The default value for this is 3 seconds. # We override this to 0 here as it makes for a better out-of-the-box experience for development and testing. # However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup. group.initial.rebalance.delay.ms=0
-
分发kafka文件夹到三台服务器
[lili@hadoop102 module]$ xsync kafka/
分发之后,分别在其他服务器上修改配置/opt/module/kafka/config/server.properties中的broker.id=1、broker.id=2
-
配置环境变量
分别在三台服务器上配置环境变量
[lili@hadoop102 module]$ vim /etc/profile.d/env.sh #KAFKA_HOME export KAFKA_HOME=/opt/module/kafka export PATH=$PATH:$KAFKA_HOME/bin [lili@hadoop102 module]$ source /etc/profile.d/env.sh
-
启动集群
[lili@hadoop102 kafka]$ bin/kafka-server-start.sh config/server.properties & [lili@hadoop103 kafka]$ bin/kafka-server-start.sh config/server.properties & [lili@hadoop104 kafka]$ bin/kafka-server-start.sh config/server.properties &
在打开一个shell窗口连接hadoop102查看系统进程
[lili@hadoop102 ~]$ xcall.sh jps ----------hadoop102---------- 21025 NameNode 21460 NodeManager 21142 DataNode 21543 JobHistoryServer 25946 Kafka 20826 QuorumPeerMain 23707 Application 30063 Jps ----------hadoop103---------- 16547 Kafka 13589 QuorumPeerMain 13800 ResourceManager 15736 Application 17993 Jps 13918 NodeManager 13662 DataNode ----------hadoop104---------- 19041 Jps 14242 DataNode 14358 SecondaryNameNode 16840 Kafka 14447 NodeManager 14175 QuorumPeerMain [lili@hadoop102 ~]$
-
关闭集群
[lili@hadoop102 kafka]$ bin/kafka-server-stop.sh stop [lili@hadoop103 kafka]$ bin/kafka-server-stop.sh stop [lili@hadoop104 kafka]$ bin/kafka-server-stop.sh stop
关闭集群后查看系统进程
[lili@hadoop102 ~]$ xcall.sh jps ----------hadoop102---------- 21025 NameNode 21460 NodeManager 21142 DataNode 21543 JobHistoryServer 30135 Jps 20826 QuorumPeerMain 23707 Application ----------hadoop103---------- 18050 Jps 13589 QuorumPeerMain 13800 ResourceManager 15736 Application 13918 NodeManager 13662 DataNode ----------hadoop104---------- 14242 DataNode 14358 SecondaryNameNode 19102 Jps 14447 NodeManager 14175 QuorumPeerMain [lili@hadoop102 ~]$
kafka启动脚本
-
编写脚本
[lili@hadoop102 bin]$ vim kf.sh #!/bin/bash case $1 in "start"){ for i in hadoop102 hadoop103 hadoop104 do echo " --------启动 $i Kafka-------" ssh $i "/opt/module/kafka/bin/kafka-server-start.sh -daemon /opt/module/kafka/config/server.properties " #daemon进程又称为守护 进程,是在系统 启动就运行,系统关闭才停止的进程,独立于终端之外,不与客户端交 #互。一般进程在关闭终端后就停止了,而daemon进程不会停止。 done };; "stop"){ for i in hadoop102 hadoop103 hadoop104 do echo " --------停止 $i Kafka-------" ssh $i "/opt/module/kafka/bin/kafka-server-stop.sh stop" done };; esac
-
增加脚本权限
[lili@hadoop102 bin]$ chmod 777 kf.sh
-
启动脚本
[lili@hadoop102 module]$ kf.sh start
-
关闭脚本
[lili@hadoop102 module]$ kf.sh stop
Kafka命令行操作
1.查看Kafka Topic列表
[lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 --list
topic_event
topic_start
如果没有出现这两个topic可能的原因
- 在kafka启动前应当先启动采集日志flume
- 缺乏数据源,查看/tmp/logs/目录下是否有日志数据。
- 如果仍然没有解决,尝试自行创建Kafka Topic
2.创建Kafka Topic
进入到/opt/module/kafka/目录下分别创建:启动日志主题、事件日志主题。
-
创建启动日志主题
[lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181 --create --replication-factor 1 --partitions 1 --topic topic_start
-
创建事件日志主题
[lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181 --create --replication-factor 1 --partitions 1 --topic topic_event
3.删除Kafka Topic
-
删除启动日志主题
[lili@hadoop102 kafka]$ bin/kafka-topics.sh --delete --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181 --topic topic_start
-
删除事件日志主题
[lili@hadoop102 kafka]$ bin/kafka-topics.sh --delete --zookeeper hadoop102:2181,hadoop103:2181,hadoop104:2181 --topic topic_event
4.kafka消费信息
-
消费启动日志主题
[lili@hadoop102 kafka]$ bin/kafka-console-consumer.sh \ --bootstrap-server hadoop102:9092 --from-beginning --topic topic_start
–from-beginning:会把主题中以往所有的数据都读取出来。根据业务场景选择是否增加该配置。
-
消费事件日志主题
[lili@hadoop102 kafka]$ bin/kafka-console-consumer.sh \ --bootstrap-server hadoop102:9092 --from-beginning --topic topic_event
5.查看kafka Topic详情
-
查看启动日志主题
[lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 \ --describe --topic topic_start
-
查看事件日志主题
[lili@hadoop102 kafka]$ bin/kafka-topics.sh --zookeeper hadoop102:2181 \ --describe --topic --topic topic_event
6.kafka压力测试
利用kafka自带的官方脚本,对Kafka进行压测。
kafka-producer-perf-test.sh
kafka-consumer-perf-test.sh
-
Kafka Producer压力测试
[lili@hadoop102 kafka]$ bin/kafka-producer-perf-test.sh --topic test --record-size 100 --num-records 100000 --throughput -1 --producer-props bootstrap.servers=hadoop102:9092,hadoop103:9092,hadoop104:9092
说明:
record-size是一条信息有多大,单位是字节。
num-records是总共发送多少条信息。
throughput 是每秒多少条信息,设成-1,表示不限流,可测出生产者最大吞吐量。
打印结果:
100000 records sent, 27510.316369 records/sec (2.62 MB/sec), 1303.49 ms avg latency, 1597.00 ms max latency, 1434 ms 50th, 1569 ms 95th, 1589 ms 99th, 1595 ms 99.9th.
参数解析:本例中一共写入10w条消息,吞吐量为2.62 MB/sec,每次写入的平均延迟为1597.00毫秒,最大的延迟为1595毫秒。(我的电脑好菜!)
-
Kafka Consumer压力测试
[lili@hadoop102 kafka]$ bin/kafka-consumer-perf-test.sh --zookeeper hadoop102:2181 --topic test --fetch-size 10000 --messages 10000000 --threads 1
说明:
–zookeeper 指定zookeeper的链接信息
–topic 指定topic的名称
–fetch-size 指定每次fetch的数据的大小
–messages 总共要消费的消息个数
注:Consumer的测试,如果这四个指标(IO,CPU,内存,网络)都不能改变,考虑增加分区数来提升性能。
打印结果:
start.time, end.time, data.consumed.in.MB, MB.sec, data.consumed.in.nMsg, nMsg.sec 2021-07-31 07:23:43:903, 2021-07-31 07:23:49:424, 19.0735, 3.4547, 200000, 36225.3215
开始测试时间,测试结束数据,共消费数据19.0735MB,吞吐量3.4547MB/s,共消费200000条,平均每秒消费36225.3215条。