蓝桥杯——蛇形填数

本文介绍了蓝桥杯竞赛中关于蛇形填数问题的解题方法。通过找规律和暴力模拟,提出两种解题思路,并详细解释了数组a的长度设定、变量t的初始化原因,以及数列增长的规则。最后,提供了计算20行20列值的两种方法,包括矩阵相加和规律推算,并附有运行截图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

蓝桥杯——蛇形填数

题目:

如下图所示,小明用从1开始的正整数“蛇形”填充无限大的矩阵。
				1	2	6	7	15	...
				3	5	8	14	...
				4	9	13	...
				10	12	...
				...
容易看出矩阵第二行第二列中的数是5。请计算出矩阵第20行第20列的数是多少?

答案要求:

这是一道结果填空题,只需要算出结果后提交即可。最后结果为一个整数,
提交答案时只填写这个整数,填写多余的内容不得分。

这道题首先需要找规律,当然也可以选择暴力模拟ÿ

### 第十一届蓝桥杯 C++ 组蛇形解题思路 对于第十一届蓝桥杯中的“蛇形”问题,其核心在于理解如何按照特定模式填充二维组。该模式是从左上角开始向右上方扩展,在遇到边界时转向下一列或下一行继续填充。 #### 题目描述 给定一个无限大矩阵,使用从1起始的连续自然按一定规则进行填充。具体来说: - 第一行为`1, 2, 6...` - 接下来的每一行依次为`3, 5`, `4, 9`, ... 目标是求出位于指定位置处的具体值[^1]。 #### 解决方案分析 为了找到任意坐标(i,j)对应的值,可以观察到沿主对角线方向的据呈现出明显的增长趋势。例如,最左侧的一条斜线上有`1 -> 5 -> 13 -> ...`这样的序列变化规律。通过归纳总结可得每一步增加的量遵循着一定的学关系式:每次增量等于前一次的基础上加4再乘以当前步减去1的结果。 因此,当需要获取某一对坐标的实际值时,可以通过累加这些差分值得到最后的答案[^3]。 #### 实现方法 下面给出了一种基于上述逻辑编写的C++程序来解决这个问题: ```cpp #include <iostream> using namespace std; int main(){ int row = 20; int col = 20; // 初始化宽度w和最终结果ans int w = 4*(row-1), ans = 1; // 计算到达目标行列所需的总增量 for (int i = 1; i <= min(row,col)-1 ; ++i){ ans += w; w += 4; } // 输出结果 cout << "The number at position ("<<row<<","<<col<<") is:"<<endl; cout << ans+(abs(col-row)*((min(row,col)==row)?(max(row,col)-min(row,col)):-(max(row,col)-min(row,col)))) << endl; } ``` 这段代码首先设定了要查询的位置(即第20行第20列),接着利用循环结构模拟了沿着对角线前进的过程,并不断更新累计的变化量直至达到目的地为止。最后根据行列之间的相对距离调整得到确切的目标值[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值