- 博客(113)
- 资源 (197)
- 收藏
- 关注
原创 matlab+yalmip+cplex求解车辆路径优化问题(VRP)--yalmip+cplex安装与调试
matlab+yalmip+cplex安装与调试
2023-06-07 15:17:43 3390
原创 matlab遗传算法求解带有时间窗、车载容量限制、多车辆(多车型)、单(多)配送中心路径优化VRPTW多约束(冷链、生鲜、外卖等路径优化问题)【matlab优化算法一】
123
2021-01-07 22:56:00 10110 33
原创 matlab+yalmip+cplex求解车辆路径优化问题(VRP)--cplex求解vrp
此外,CPLEX中还提供了一些高级技术,如割平面、分支定界等技术,可以进一步优化VRP问题的求解效率和精度。需要注意的是,在VRP问题中,常见的约束条件包括车辆容量约束、时间窗口约束、节点访问约束等。
2023-06-13 09:27:47 1393
原创 matlab+yalmip+cplex求解车辆路径优化问题(VRP)--matlab中yalmip函数介绍
matlab+yalmip+cplex求解车辆路径优化问题(VRP)--matlab中yalmip函数介绍
2023-06-13 09:19:38 6061
原创 matlab改进萤火虫算法求解路径优化VRP
ticclearclc%% 导入订单数据和各个储位物品的重量数据load orders.mat ordersload item_weight.mat item_weight%% 仓库参数初始化depot_leftAisle=1.5; %仓库与第1条拣选通道的距离,1.5LUenter_leave_aisle=1; %从通道进入拣选通道或从拣选通道进入通道需要行走的距离,1LUadjacent_location=1; %同一条拣选通道的两个相邻储位之
2021-11-11 22:32:59 1504 1
原创 matlab改进(结合聚类)头脑风暴算法求解路径优化问题VRP
ticclearclc%% 用xlsread函数来读取xlsx文件data=xlsread('实例验证数据.xlsx','转换后数据','A2:H17');cap=150; %车辆最大装载量v=30/60; %车辆行驶速度=30km/h=30/60km/min%% 提取数据信息E=data(1,6); %配送中心时间窗开始时间L=data
2021-11-11 22:29:28 1729 2
原创 matlab改进鲸鱼算法求解路径优化
鲸鱼优化算法概述鲸鱼优化算法( Whale Optimization Algorithm,WOA)是 Mirjalili 等于 2016 年提出的一种基于座头鲸鱼狩猎方法的元启发式算法。它成功应用于各种复杂的离散优化问题,如资源调度问题、建筑工地的工作流程规划、选址与路径规划和神经网络训练等。在算法改进和应用方面,闫旭等提出了混合随机量子鲸鱼优化算法求解 TSP 问题; 滕德云等把鲸鱼优化算法与拓扑结构相结合地改进鲸鱼优化算法,用来求解多目标无功优化调度问题; 涂春梅等提出了混沌反馈自适应鲸鱼优化算法;
2021-11-11 22:24:49 4226 4
原创 matlab改进灰狼算法求解路径优化
灰狼 优 化 算 法 ( grey wolf optimization algo-rithm,GWO)是模仿灰狼等级划分和灰狼捕食行为而提出的群智能搜索算法。该算法具有控制参数少、收敛速度快和计算简单等优点,已在机器学习、函数寻优、数据挖掘、电力调度、控制器设计调优等方面得到广泛应用。目前应用灰狼优化算法求解 CVRP 的文献较少,因此本文提出一种基于 GWO 的农产品物流配送车辆路径优化方法。研究结果表明,与 PSO 和 GA 相比,在行驶里程和平均行驶成本方面,GWO 的成本最低且行驶里程最少。GW
2021-11-11 22:17:06 2905 7
原创 matlab改进大规模邻域搜索算法求解路径优化
近年来,随着环境问题的日益突出,越来越多物流配送企业开始使用节能环保的电动物流车。 但是由于续航里程有限及充电设施布局不完善等问题,电动车并不能完全代替燃油车,所以大多物流企业目前主要采用电动车与燃油车混合配送的过渡模式。 与燃油车配送不同,由于电动车需途中进行充电,改变了原有配送系统的配置参数,并对配送时间窗产生影响;此外,实际配送过程中配送中心会在车辆离开后继续接收新的需求,导致配送系统的状态不断发生变化,需要对已有配送方案重新进行调整。 如果不能合理快速地规划与调整配送路线,不仅会大幅增加企业的运营成
2021-11-11 22:08:21 4190 1
原创 matlab改进变邻域搜索算法求解路径优化。
变邻域搜索算法求解旅行商问题旅行商问题( Traveling Salesman Problem,TSP)是经典的组合优化问题。现在假设有若干个城市,任意两个城市之间的距离已知,则TSP可以简单地描述为:一个旅行商人从任意一个城市出发,在访问完其余城市后(每个城市只被访问一次,不允许多次访问),最后返回出发城市,找到旅行商人所行走的最短路线变邻域搜索( Variable Neighborhood Search,VNS)算法通过搜索若干个不同邻域以求得问题最终的解,其已经被广泛应用于求解组合优化问题。只能先
2021-11-11 22:01:12 1996 2
原创 matlab取送货路径优化
问题描述假设快递集散中心负责n个配送点的快递配送任务以及包装回收,每个配送点都配备了快递柜以及快递包装回收容器,配送点工作人员在负责快递柜的投放工作以及寄件服务的同时还负责废旧包装的打包工作。快递运输车辆从快递集散中心出发向配送点配发快件并收取配送点需邮寄的快件和打包好的快递包装,快递运输车辆在完成配送任务后返回快递集散中心并卸载需邮寄的快件和打包好的快递包装,快递集散中心负责将卸载的快件向上一级配送中心邮寄并把回收的快递包装整合交给废旧包装回收公司。体积25 立方米百公里油耗6
2021-11-04 13:16:54 3451
原创 matlab选址问题——分级选址定容
(1)快递末端共配网络体系层级构成:快递二级分拨中心和末端共同配送网点。服务某区域的快递二级分拨中心位置唯一且已知,顾客点位置已知;(2)末端共配网点选址成本由固定成本、运输成本及运营成本构成;下标:i ——表示第i个末端共配网点,i = {1,2,3,…,M};j ——表示第j个末端共配网点,j = {1,2,3,…,N};v ——表示末端共配网点的规模,v = {1,2,3,…,L};变量:xiv ——表示选择i为末端共配网点,规模为v;yij ——表示末端共配网点i为第j个客户配送;
2021-10-28 11:15:32 4617 8
原创 matlab电动汽车路径优化——考虑中途充电
概述基于电动汽车电量消耗特性,考虑电动车里程、载重、顾客服务时间窗等约束,建立以配送总成本最小为目标的电动车调度优化问题模型;利用自然数编码的遗传算法,求解出电动车的配送路线以及车辆的充电计划。由于电动汽车是靠电能驱动,故充电是电动汽车在行驶过程中必须面对的问题之一。当电池电量不足以完成剩余的配送任务时,电动车需要进入到邻近的充电站进行充电,以供其完成剩余的配送任务。在本文中,充电站采用的是快速充电方式,使电动车在30 min左右就可以完成充电。但是由于充电站可能不位于车辆既定的行驶线路上,车辆会发生行
2021-10-25 15:33:29 4868 9
原创 PID神经网络控制【神经网络二十六】
PID控制器是工业控制应用中常见的反馈回路部件。这个控制器把收集的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输出值的目的是使系统的数据达到或保持参考值。PID在本质上是线性控制规律,具有传统控制理论的弱点——只适用于线性SISO系统,在复杂系统中控制效果不佳。PIDNN(PID神经元网络)的基础是分别定义了具有比例、积分、微分功能的神经元,从而将PID控制规律融合在神经元网络中。PIDNN的各层神经元个数、连接方式、连接权重初值是按PID控制规律的基本原则来确定的。PIDNN
2021-09-25 20:43:16 3372
原创 概率神经网络在遥感图像中的应用【神经网络二十五】
其整体实现的MATLAB代码如下:>> clear all;I0=imread('remot.jpg'); %载入图像[m_I0,n_I0,l_I]=size(I0); %计算灰度图像的尺度figure;imshow(I0); %效果如图11-16所示title('原始图像');%由于图像过大,对其进行缩小处理m_I=150; %纵向尺寸n_I=ceil(m_I*n_I0/m_I0); %横向尺寸I_R=imresize(I0,[m_I,n_I.
2021-09-25 20:43:08 199
原创 BP_Adaboost设计公司账务预警【神经网络二十四】
对于案例来说,共有1350组公司财务状态数据,每组数据的输入为10维,代表11.3.3节提及的10个指标,输出为1维,代表公司的财务状态,取值为1时表示财务状况良好,取值为-1时表示财务出现问题。从中随机选取1000组数据作为训练数据,350组数据作为测试数据。根据数据维数,采用的BP神经网络结构为“10-6-1”,共训练生成10个BP神经网络弱分类器,最后用10个弱分类器组成强分类器对公司财务状况进行分类。使用MATLAB实现BP_Adaboost模型的预警系统的步骤如下。(1)选择数据集。从样本空间
2021-09-25 20:43:00 346
原创 预测地下水水位【神经网络二十三】
利用RBF神经网络预测地下水水位的步骤如下。(1)定义样本数据。根据如表11-1所示的数据,定义各样本的输入向量及其目标输出值。输入向量定义为5×24的矩阵,目标输出值为1×24的行向量。(2)划分训练数据与测试数据。使用第6~24号样本训练得出的模型对第1~5号样本进行检验。(3)为了充分利用训练样本,对19份训练样本进行二维插值,将样本数量增加到100份。在此用到了MATLAB的二维插值函数interp2。先将训练输入向量与对应的目标输出合并为一个6×19的矩阵,经过插值,得到一个6×100的矩阵
2021-09-25 20:42:47 1093
原创 实现图像压缩【神经网络二十二】
BP神经网络压缩的实现>> %基于BP神经网络的图像压缩clear allrng(0)%%压缩率控制K=4;N=2;row=256;col=256;%%输入数据I=imread('lena.bmp');%统一将形状转换为row*colI=imresize(I,[row,col]);%%划分图像块,形成K^2*N的矩阵P=block_divide(I,K); %%归一化P=double(P)/255;%%建立BP神经网络net=feedforwardnet(N
2021-09-25 20:42:39 722
原创 神经网络的GUI应用【神经网络二十一】
MATLAB神经网络工具箱为用户提供了丰富的函数接口,这些函数是进行神经网络仿真程序设计的基础工具,用户可以简单地将它们组合使用,也可以按照自己的构想修改神经网络的结构,甚至设计自定义的神经网络。神经网络的应用是非常广泛的,用户遍及各行各业。在神经网络的用户群中,存在大量不熟悉MATLAB程序设计和工具箱函数调用规则的用户。对于他们来说,很难迅速达到一个MATLAB程序开发者的水平,因此仅仅利用神经网络工具箱的函数接口,很难让大部分用户都能方便、快捷地学习并有效利用神经网络。因此,MATLAB R201
2021-09-25 20:42:26 784
原创 模糊神经网络与混沌神经网络【神经网络二十】
利用模糊神经网络预测嘉陵江的水质。背景分析:水质评价是根据水质评价标准和采样水样本各项指标值,通过一定的数学模型计算采样水样本的水质等级。水质评价的目的是能够判断采样水样本的污染等级,为污染防治和水源保护提供依据。水体水质的分析指标有很多项,主要包括氨氮、溶解氧、化学需氧量、高锰酸盐指数、总磷和总氮这6项指标。其中,氨氮是有机物有氧分解的产物,可导致水富营养化现象的产生,是水体富营养化的指标。溶解氧是溶解在水中的氧,是反映水体自净能力的指标。化学需氧量则采用强氧化剂铬酸钾处理水样,消耗的氧化剂量是水中还
2021-09-23 17:11:09 576
原创 小波神经网络【神经网络十九】
城市交通网中交通路段上某时刻的交通流量与本路段前几个时段的交通流量有关,并且交通流量具有24小时内准周期的特性。根据交通流量的特性设计小波神经网络,该网络分为输入层、隐含层和输出层。其中,输入层输入的是当前时间点的前n个时间点的交通流量;隐含层节点由小波函数构成;输出层输出当前时间点的预测交通流量。分析:首先采集4天的交通流量数据,每隔15分钟记录一次该段时间内的交通流量,一共记录384个时间点的数据,用3天共288个交通流量的数据训练小波神经网络,最后用训练好的小波神经网络预测第4天的交通流量。其实现步
2021-09-23 16:59:19 995
原创 对偶传播神经网络【神经网络十八】
】创建一个CPN网络,完成在已知一个人本星期应该完成的工作量和此人当时的思想情绪的情况下,对此人星期日下午的活动安排提出建议。按照一般情况,将工作量分为3个档次,即没有、有一些和很多,所对应的量化值分别为0、0.5和1;把思想情绪也分为3个水平,即低、一般和高,所对应的量化值分别为0、0.5和1。可选择的活动有5个,即看画报、购物、散步、吃饭和工作。工作量和思想情绪共有6种组合,这6种组合分别对应各自的最佳活动选择。网络训练样本模式如表9-5所示。>> clear all;%初始化正向权值
2021-09-23 16:57:59 488 1
原创 盒中脑神经网络【神经网络十七】
神经网络工具箱中没有为BSB神经网络提供专门的函数工具,因此,无法利用神经网络工具箱中的函数创建、训练并应用网络。但是,Hugh Pasika于1997年基于MATLAB平台开发了BSB神经网络的实现函数。其MATLAB源程序代码如下:function C=BSB(X,beta,multi)%function C=BSB(X,beta)%这个M文件为BSB模型示例% X为负输入矩阵% beta为负反馈系数%C为返回负反馈收敛迭代hold onflag=0;x=X(:);c=2; %c为
2021-09-23 16:56:24 210
原创 拓扑函数【神经网络十六】
拓扑函数用来确定神经元的排列形式,有六边形、网格形(矩形)、三角形及随机结构等,下面展开介绍。1)gridtop函数gridtop函数用于创建SOM神经网络中输出层的网格形拓扑结构,函数的调用格式如下:pos=gridtop(dim1,dim2,…,dimN)其中,输入参数dim1,dim2,…,dimN表示拓扑结构的维数,参数大小表示拓扑结构的形状大小,即gridtop(2,3,4)表示2×3×4的三维拓扑结构;返回参数pos表示由N个并列向量组成的N×S维的矩阵,S=dim1×dim2×… ×d
2021-09-23 16:52:43 1944
原创 自组织竞争神经网络工具箱函数【神经网络十五】
创建函数MATLAB神经网络工具箱提供了几个用于实现自组织竞争神经网络创建的函数,下面展开介绍。1)newc函数newc函数用于创建一个竞争神经网络,在MATLAB R2014b版本中被competlayer函数替代。newc函数的调用格式如下:net=newc(range,class,klr,clr)其中,class是数据类别个数,也是竞争层神经元的个数;klr和clr分别表示网络的权值学习率与阈值学习率。竞争神经网络在训练时不需要目标输出,网络通过对数据分布特性的学习,自动将数据划分为指定类别
2021-09-23 16:50:31 1945
原创 自组织竞争神经网络及其应用【神经网络十四】
自组织神经网络又称为自组织竞争神经网络,特别适合用于解决模式分类和识别方面的应用问题。该网络模型属于前向神经网络模型,采用无监督学习算法,其工作的基本思想是让竞争层的各个神经元通过竞争与输入模式进行匹配,最后仅有一个神经元成为竞争的胜利者,这个获胜神经元的输出就代表对输入模式的分类。常用的自组织竞争神经网络有自适应共振理论(Adaptive Resonance Theory,ART)神经网络、自组织特征映射(Self-Organizing Feature Mapping,简称SOFM或SOM)神经网络、对
2021-09-23 16:46:08 1167
原创 用Elman神经网络预测股价【神经网络十三】
用Elman神经网络预测股价,原始资料是某只股票连续280期的股价表。采用前140期股价作为训练样本,其中每连续5期的价格作为训练输入,第6期的价格作为对应的期望输出。解析:针对股票市场这种复杂的非线性动力学系统,着重分析递归神经网络(Elman)的股价预测模型,将历史数据作为网络的学习样本,找出股价趋势发展的内在规律,并通过仿真实验验证Elman神经网络模型对股市的预测效果。其实现的MATLAB代码如下:>> clear all; %清除工作空间中的所有变量%加载数据load
2021-09-23 16:43:37 453 1
原创 反馈神经网络工具箱函数【神经网络十二】
所示为某场所7天中上午的空调负荷数据。用Elman神经网络进行预测,采用前6天的数据作为网络的训练样本,每3天的负荷作为输入向量,第4天的负荷作为目标向量,第7天的数据作为网络的测试数据。其实现的MATLAB代码如下:>> clear all;%原始数据data =[0.4413 0.4707 0.6953 0.8133;0.4379 0.4677 0.6981 0.8002;... 0.4517 0.4725 0.7006 0.8201;0.4557 0.4790 0.7
2021-09-23 16:42:40 203
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人