Anaconda命令窗口输入指令

base环境下的jupyter Notebook支持新创建的虚拟环境
1.激活新创建的虚拟环境,输入 conda install ipykernel 下载指令,命令下载安装jupyter Notebook的内核ipykernel。
2.使用 python -m ipykernel install --user --name 环境名 --display--name 环境名 ,下载指令在虚拟环境中添加指定内核对象。
3.验证。终端控制台cd进入某个磁盘目录(暂时将该磁盘目录作为Jupyter Notebook的工作目录),便签文件夹有验证的步骤图片 。
4.输入 jupyter notebook 命令启动jupyter notebook并在浏览器中进行显示。
5.anaconda prompt 中 输入jupyter kernelspec list 查看安装的内核和位置

命令窗口中输如以下指令:
查看目前已安装的模块(模块名以及版本): pip list 
安装指定版本模块:pip install 模块名==具体版本号 
卸载模块:pip uninstall  ”要卸载的模块“

pip install 命令下载安装所需要的的三方库(使用国内的镜像,下载速度会很快,方法:-i + 镜像网址)
1.清华:https://pypi.tuna.tsinghua.edu.cn/simple/
2.豆瓣:http://pypi.douban.com/simple/
3.阿里云:http://mirrors.aliyun.com/pypi/simple/
4.中国科学技术大学 http://pypi.mirrors.ustc.edu.cn/simple/
    
   例如:
   conda activate tf-cpu (注: 启动指定的虚拟环境)
   pip install tensorflow -i https://pypi.douban.com/simple
   pip install opencv-python -i https://pypi.douban.com/simple
——————————

   新环境的创建和环境的删除,已有环境信息的查询
1 #conda新环境的创建
conda create -n '环境名' python='版本号'
2 #conda环境的卸载
conda remove -n '环境名' --all
3 #conda环境信息的查询
conda info -e 或 conda env list

  conda activate 环境名 (进入新环境)
1 #使用conda install命令安装包
conda install '包的名字'
conda install '包的名字'='版本号'  eg: conda install tensorflow=1.10
2 #使用conda search搜索包(目的是查看可获得的版本)
conda search '包的名字' eg: conda search tensorflow
3 #conda列出当前环境所有包
conda list
—————————————

项目打包(生成 .exe文件)
.安装第三方模块
   windows命令窗口(win+r,输入cmd)中输入:pip install PyInstaller
.执行打包操作
   命令窗口中输入:pyinstaller -F 文件路径\文件名
    根据创建的路径找到生成的文件,将其他需要的文件复制到同一路径

### Ubuntu 系统中 Anaconda 命令使用教程 #### 1. 安装与初始化 在Ubuntu系统中安装Anaconda后,首次启动终端可能会遇到shell初始化失败的情况[^1]。这通常是因为路径未正确设置或配置文件存在问题。 为了确保Anaconda正常工作,在每次打开新的终端窗口时执行如下命令来激活: ```bash source ~/anaconda3/bin/activate ``` 如果希望永久生效,则可以编辑`~/.bashrc`文件并添加上述命令到最后一行保存退出后再重新加载该文件: ```bash echo "source ~/anaconda3/bin/activate" >> ~/.bashrc && source ~/.bashrc ``` #### 2. 创建虚拟环境 创建一个新的Python环境对于管理不同项目的依赖关系非常重要。通过下面这条简单的指令即可完成操作: ```bash conda create --name myenv python=3.x ``` 其中`myenv`代表新建立的环境名称,而`python=3.x`指定了所使用的Python版本号(具体数值取决于个人需求)。之后可以通过以下方式进入指定环境中开展后续的工作流程: ```bash conda activate myenv ``` 当不再需要某个特定环境时,也可以很方便地将其删除掉而不影响其他部分的功能实现: ```bash conda env remove --name myenv ``` #### 3. 包管理和更新 针对已有的软件包进行升级或者降级处理同样简单明了。只需要输入相应的参数就能轻松搞定一切事务: - 升级单个库至最新稳定版: ```bash conda update package_name ``` - 将整个环境内的所有组件都调整为当前可用的最佳状态 ```bash conda update --all ``` 另外值得注意的是,在某些情况下可能还会涉及到跨平台移植性方面的要求;此时就需要特别关注目标操作系统之间的差异之处,并据此作出适当的选择以保证程序能够顺利编译运行[^3]。 #### 4. 版本兼容性和错误排查 由于TensorFlow等框架对CUDA Toolkit和cuDNN有着严格的规定,因此务必仔细核对官方文档中的说明,确保各个组成部分之间相互匹配无误。一旦发生冲突现象,往往会造成严重的后果——比如无法成功构建模型甚至崩溃重启等问题的发生频率也会随之增加不少。 面对此类棘手状况,建议采取逐步调试的方法论来进行分析诊断:先尝试单独测试每一个独立模块能否正常使用;再依次加入其余要素直至定位出真正引发矛盾的关键所在为止。与此同时还可以借助日志记录功能获取更多有价值的信息作为辅助判断依据之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值