最优化建模算法理论之Armjio准则(数学原理及MATLAB实现)


一、前言

为了防止迭代过程中函数值 f ( x k ) f(x^k) f(xk) 的下降量不够充分,以至于算法无法收敛到极小值点,必须引入一些更合理的线搜索准则来确保迭代的收敛性。

Armijo 准则是一个常用的线搜索准则,引入 Armijo 准则的目的是保证每一步迭代充分下降。


二、Armjio准则

1. 定义

d k d^k dk 是点 x k x^k xk 处的下降方向,若

f ( x k + α d k ) ≤ f ( x k ) + c α ∇ f ( x k ) T d k (1) f(x^k + \alpha d^k) \le f(x^k) + c\alpha \nabla f(x^k)^Td^k \tag{1} f(xk+αdk)f(xk)+cαf(xk)Tdk(1)

则称步长 α \alpha α 满足 Armjio 准则,其中 c ∈ ( 0 , 1 ) c \in (0, 1) c(0,1) 是一个常数。

2. 几何含义

Armjio 准则有非常直观的几何含义,它指的是点 ( α , ϕ ( α ) ) (\alpha, \phi(\alpha)) (α,ϕ(α)) 必须在直线

l 1 ( α ) = ϕ ( 0 ) + c α ∇ f ( x k ) T d k l_1(\alpha) = \phi(0) + c\alpha \nabla f(x^k)^Td^k l1(α)=ϕ(0)+cαf(xk)Tdk

的下方。如下图所示:

在这里插入图片描述

区间 [ 0 , α 1 ] [0, \alpha_1] [0,α1] 中的点均满足 Armijo 准则。我们注意到 d k d_k dk 为下降方向,这说明 l ( α ) l (α) l(α) 的斜率为负,选取符合条件 (1) 的 α \alpha α 确实会使得函数值下降。


三、代码实现

以下编译环境为 MATLAB R2019b 下编译运行,不同版本可能略有出入。

function [alpha, xk, f, k] = Armjio(fun, grid, x0, dk)
	%
	% Function [alpha, xk, fx, k] = Armjio(fun, grid, x0, dk)
	% 求出函数fun在x0处以dk为下降方向时的步长alpha,同时返回相对应的下
	% 一个下降点xk以及xk处的函数值fx,k为迭代次数
	% -----------------------------------------------------------
	% 输入: 
	% 		fun 	函数名称(字符变量)
	%		grid 	梯度函数名称(字符变量)
	%		x0		迭代点(列向量)
	%		dk		函数在迭代点处的下降方向(列向量)
	%
	% 输出:
	%		alpha	函数在x0处以dk为下降方向时的下降步长
	%		xk		函数在x0处以dk为下降方向,以alpha为步长
	%				求得的下降点
	%		fx		函数在下降点xk处的函数值
	%		k		求步长算法迭代次数
	% -----------------------------------------------------------
	% by Zhi Qiangfeng 
	%
	beta = 0.333; 		% 步长 alpha 的迭代系数,小于 1
	c = 1e-3; 		% 泰勒展开式补足系数,0 < c < 1/2
	alpha = 1; 			% 初始步长为 1
	k = 0; 				% 统计迭代次数
	gk = feval(grid, x0);	% x0处的梯度值
	fd = feval(fun, x0 + alpha * dk); 	% 函数在下一个迭代点处的目标函数值
	fk = feval(fun, x0) + alpha * c * gk' * dk; 	%  函数在下一个迭代点处的泰勒展开值
	while fd > fk
	    alpha = beta * alpha;
	    fd = feval(fun, x0 + alpha * dk);
	    fk = feval(fun, x0) + alpha * c * gk' * dk;
	    k = k + 1;
	end
	xk = x0 + alpha * dk;	% 下降点
	f = feval(fun, xk);	% 下降点处函数值
end

在实际应用中,参数 c 1 c_1 c1 通常选为一个很小的正数,例如 c 1 = 1 0 − 3 c_1 = 10^{−3} c1=103,这使得 Armijo 准则非常容易得到满足。


三、输出示例

Rosenbrock 函数为例,这是优化领域中一个著名的检验函数,其函数与其梯度函数如下:

f ( x ) = 100 ( x 2 − x 1 2 ) 2 + ( 1 − x 1 ) 2 , g ( x ) = [ − 400 x 1 x 2 + 400 x 1 3 + 2 x 1 − 2 200 x 2 − 200 x 1 2 ] \begin{aligned} &f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2,\\ &g(x) = \left[\begin{aligned}-400x_1x_2 + 400x_1^3 + 2x_1 - 2\\200x_2 - 200x_1^2\end{aligned}\right] \end{aligned} f(x)=100(x2x12)2+(1x1)2,g(x)=[400x1x2+400x13+2x12200x2200x12]

编写函数文件 Rosenbrock.m 如下:

function f = Rosenbrock(x)
f = 100 * (x(2) - x(1)^2)^2 + (1 - x(1))^2;
end

随后是梯度函数文件 grid.m 如下:

function g = grid(x)
g = [-400 * x(1) * x(2) + 400 * x(1)^3 + 2 * x(1) - 2;
    200 * x(2) - 200 * x(1)^2];
end

接着我们求 Rosenbrock 函数在 [-1; 1] 点处以负梯度方向为下降方向的迭代步长,调用我们上面的 Armjio 函数,输出结果如下:

>> x0 = [-1; 1];
>> dk = -grid(x0);
>> [alpha, xk, fx, k] = Armjio("Rosenbrock", "grid", x0, dk)
alpha =
    0.0014
xk =
   -0.9945
    1.0000
fx =
    3.9900
k =
    6

输出:Rosebrock 函数在 [-1; 1] 点处以负梯度方向为下降方向的迭代步长为 0.0014,下一个迭代点为 [-0.9945; 1],且下一步函数值为 3.99。


四、附

最优化相关算法设计数学原理:最优化/Optimization文章合集


有帮助可以点赞哦,谢谢大家的支持~

  • 36
    点赞
  • 172
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 28
    评论
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Z.Q.Feng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值