剑指 Offer 16. 数值的整数次方

这篇博客介绍了两种方法来计算双精度浮点数的幂次。解法一是利用位运算,通过快速幂算法求解;解法二是采用递归分治策略,同样实现了快速计算。两种方法都不依赖库函数,并且处理了负指数的情况。示例展示了不同输入下的计算结果,包括正指数、负指数和整数指数的场景。
摘要由CSDN通过智能技术生成

剑指 Offer 16. 数值的整数次方

实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn)。不得使用库函数,同时不需要考虑大数问题。

示例 1:

输入:x = 2.00000, n = 10
输出:1024.00000

示例 2:

输入:x = 2.10000, n = 3
输出:9.26100

示例 3:

输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25

提示:

-100.0 < x < 100.0
-231 <= n <= 231-1
-104 <= xn <= 104

解法一:位运算 求解思路

class Solution {
    public double myPow(double x, int n) {
        long N = n;
        return N >= 0 ? quickPow(x,N) : 1 / quickPow(x,-N);
    }
    public double quickPow(double x,long N){
       double ans = 1.0;
       //需要的值:
       while( N > 0){
           //说明该数的二进制 有1
           if( N % 2 == 1){
               ans *= x;
           }
           x *= x;
           //该数右移动
           N /= 2;
       }
       return ans;
    }
}

解法二:递归 分治思想

class Solution {
    public double myPow(double x, int n) {
        long N = n;
        return N >= 0 ? quickPow(x,N) : 1 / quickPow(x,-N);
    }
    public double quickPow(double x,long N){
      if(N == 0) return 1.0;
      double y = quickPow(x,N / 2);
      return N % 2 == 0 ? y*y : y*y *x;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

师晓峰

啤酒饮料矿泉水,你的打赏冲一冲

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值