不同路径

题目:
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。问总共有多少条不同的路径?

在这里插入图片描述
示例:
输入:m=3,n=2
输出: 3

输入: m=3,n=3
输出: 28

m,n<100;

class Solution {
public:
    /*
        1.设 dp[M] 表示 当前行m个位置 或者说
  	上一行 m个位置 的走法个数 注意 是行
        2.dp[M] = d[M]+dp[M-1]  该式从右侧开始计算,
  	由于已经知道第一行的 结果都是 1,那么第二行
  	的结果就是 第一行 的结果dp[i]加上 
  	当前位置前一列的值dp[i-1]
        3.初始化 dp[0,M] = 1;
    */
    int uniquePaths(int m, int n) {
        int dp[100] = {0}; //注意不能直接往里面填写1,
        		   //否则只生效dp[0]=1
        for(int i=0;i<m;i++)
            dp[i] = 1;
        for(int i=1;i<n;i++)
        {
            for(int j=1;j<m;j++)
            {
                dp[j] = dp[j-1]+dp[j];
            }
        }
        return dp[m-1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值