实数的性质学习笔记

记号与术语

符号名称
R实数集
R + R_+ R+正实数集
R − R_- R负实数集
Q有理数集
Z整数集
N自然数集
N + N_+ N+正整数集
∀ \forall 任意
∃ \exists 存在

定义1

两个非负实数
x    =    a 0 . a 1 a 2    ⋯    a n ⋯ y    =    b 0 . b 1 b 2    ⋯    b n ⋯ \begin{array}{l}x\;=\;a_0.a_1a_2\;\cdots\;a_n\cdots\\y\;=\;b_0.b_1b_2\;\cdots\;b_n\cdots\end{array} x=a0.a1a2any=b0.b1b2bn

其中 a 0 , b 0 a_0,b_0 a0,b0为非负整数, a k , b k , ( k = 1 , 2 , 3 ⋯   ) a_k,b_k,(k=1,2,3\cdots) ak,bk,(k=1,2,3)为整数, 0 ≤ a k ≤ 9 , 0 ≤ b k ≤ 9. 0\leq a_k\leq9,0\leq b_k\leq9. 0ak9,0bk9.
若有 a k = b k , k = 0 , 1 , 2 , 3 , ⋯   , a_k=b_k,k=0,1,2,3,\cdots, ak=bk,k=0,1,2,3,, 则称x与y相等,记为x=y;
a 0 > b 0 a_0>b_0 a0>b0或存在非负整数 l,使得 a k = b k , ( k = 1 , 2 , 3 , ⋯   , l ) a_k = b_k,(k=1,2,3,\cdots,l) ak=bk,(k=1,2,3,,l) a l + 1 > b l + 1 a_{l+1}>b_{l+1} al+1>bl+1,则称x大于y或y小于x,分别记为x>y或y<x.

定义2

实数x的n位不足近似

x = a 0 . a 1 a 2 ⋯ a n x = a_0.a_1 a_2\cdots a_n x=a0.a1a2an 为非负实数. 称有理数 x n = a 0 . a 1 a 2 ⋯ a n x_n = a_0.a_1 a_2\cdots a_n xn=a0.a1a2anx的n位不足近似

实数x的n位过剩近似

有理数 x n ‾ = x n + 1 1 0 n          ( n    =    0 , 1 , 2 , ⋯   ) . \overline{x_n}=x_n+\frac1{10^n}\;\;\;\;(n\;=\;0,1,2,\cdots). xn=xn+10n1(n=0,1,2,). 称为x的n位过剩近似.

负实数x的n位过剩近似与不足近似

对于负实数 x    =    −    a 0. a 1 a 2 … a n x\;=\;-\;a_{0.}a_1a_2\dots a_n x=a0.a1a2an,其n位不足近似与过剩近似分别为:
x n    =    −    a 0. a 1 a 2 … a n − 1 1 0 n x n ‾    = −    a 0. a 1 a 2 … a n \begin{array}{l}x_n\;=\;-\;a_{0.}a_1a_2\dots a_n-\frac1{10^n}\\\overline{x_n}\;=-\;a_{0.}a_1a_2\dots a_n\\\end{array} xn=a0.a1a2an10n1xn=a0.a1a2an

命题

x = a 0 . a 1 a 2 ⋯ a n x = a_0.a_1 a_2\cdots a_n x=a0.a1a2an y = b 0 . b 1 b 2 ⋯ b n y = b_0.b_1 b_2\cdots b_n y=b0.b1b2bn为两个实数,则x>y的等价条件是:存在非负整数n,使得 x n > y n ‾ x_n>\overline{y_n} xn>yn,其中 x n x_n xn表示x的n位的不足近似, y n ‾ \overline{y_n} yn表示y的n位的过剩近似。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

妇男主任

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值