记号与术语
符号 | 名称 |
---|---|
R | 实数集 |
R + R_+ R+ | 正实数集 |
R − R_- R− | 负实数集 |
Q | 有理数集 |
Z | 整数集 |
N | 自然数集 |
N + N_+ N+ | 正整数集 |
∀ \forall ∀ | 任意 |
∃ \exists ∃ | 存在 |
定义1
两个非负实数
x
=
a
0
.
a
1
a
2
⋯
a
n
⋯
y
=
b
0
.
b
1
b
2
⋯
b
n
⋯
\begin{array}{l}x\;=\;a_0.a_1a_2\;\cdots\;a_n\cdots\\y\;=\;b_0.b_1b_2\;\cdots\;b_n\cdots\end{array}
x=a0.a1a2⋯an⋯y=b0.b1b2⋯bn⋯
其中
a
0
,
b
0
a_0,b_0
a0,b0为非负整数,
a
k
,
b
k
,
(
k
=
1
,
2
,
3
⋯
)
a_k,b_k,(k=1,2,3\cdots)
ak,bk,(k=1,2,3⋯)为整数,
0
≤
a
k
≤
9
,
0
≤
b
k
≤
9.
0\leq a_k\leq9,0\leq b_k\leq9.
0≤ak≤9,0≤bk≤9.
若有
a
k
=
b
k
,
k
=
0
,
1
,
2
,
3
,
⋯
,
a_k=b_k,k=0,1,2,3,\cdots,
ak=bk,k=0,1,2,3,⋯, 则称x与y相等,记为x=y;
若
a
0
>
b
0
a_0>b_0
a0>b0或存在非负整数 l,使得
a
k
=
b
k
,
(
k
=
1
,
2
,
3
,
⋯
,
l
)
a_k = b_k,(k=1,2,3,\cdots,l)
ak=bk,(k=1,2,3,⋯,l) 而
a
l
+
1
>
b
l
+
1
a_{l+1}>b_{l+1}
al+1>bl+1,则称x大于y或y小于x,分别记为x>y或y<x.
定义2
实数x的n位不足近似
设 x = a 0 . a 1 a 2 ⋯ a n x = a_0.a_1 a_2\cdots a_n x=a0.a1a2⋯an 为非负实数. 称有理数 x n = a 0 . a 1 a 2 ⋯ a n x_n = a_0.a_1 a_2\cdots a_n xn=a0.a1a2⋯an 为x的n位不足近似。
实数x的n位过剩近似
有理数 x n ‾ = x n + 1 1 0 n ( n = 0 , 1 , 2 , ⋯ ) . \overline{x_n}=x_n+\frac1{10^n}\;\;\;\;(n\;=\;0,1,2,\cdots). xn=xn+10n1(n=0,1,2,⋯). 称为x的n位过剩近似.
负实数x的n位过剩近似与不足近似
对于负实数
x
=
−
a
0.
a
1
a
2
…
a
n
x\;=\;-\;a_{0.}a_1a_2\dots a_n
x=−a0.a1a2…an,其n位不足近似与过剩近似分别为:
x
n
=
−
a
0.
a
1
a
2
…
a
n
−
1
1
0
n
x
n
‾
=
−
a
0.
a
1
a
2
…
a
n
\begin{array}{l}x_n\;=\;-\;a_{0.}a_1a_2\dots a_n-\frac1{10^n}\\\overline{x_n}\;=-\;a_{0.}a_1a_2\dots a_n\\\end{array}
xn=−a0.a1a2…an−10n1xn=−a0.a1a2…an
命题
设 x = a 0 . a 1 a 2 ⋯ a n x = a_0.a_1 a_2\cdots a_n x=a0.a1a2⋯an与 y = b 0 . b 1 b 2 ⋯ b n y = b_0.b_1 b_2\cdots b_n y=b0.b1b2⋯bn为两个实数,则x>y的等价条件是:存在非负整数n,使得 x n > y n ‾ x_n>\overline{y_n} xn>yn,其中 x n x_n xn表示x的n位的不足近似, y n ‾ \overline{y_n} yn表示y的n位的过剩近似。