- 博客(12)
- 收藏
- 关注
原创 torch.meshgrid(),torch.stack() 函数解析
函数输入两个数据类型相同的一维张量,两个输出张量的行数为第一个输入张量的元素个数,列数为第二个输入张量的元素个数, 其中第一个输出张量填充第一个输入张量中的元素,各行元素相同;第二个输出张量填充第二个输入张量中的元素,各列元素相同。假如数据都是二维矩阵(平面),它可以把这些一个个平面按第三维(例如:时间序列)压成一个三维的立方体,而立方体的长度就是时间序列长度。看文字不懂没关系,直接上代码,理解了代码之后返回来看文字解释就会很清晰。dim : 新的维度, 必须在。是生成数据的维度大小,也就是。
2023-08-06 17:08:39 370
原创 pip下载扩展包时报错 ValueError: check_hostname requires server_hostname
在下载python扩展包是出现ValueError: check_hostname requires server_hostname报错。
2023-08-02 15:59:24 168 1
原创 YOLOV1和YOLOV2的区别与改进,对比学习
YOLO-V1经典的one-stage方法You Only Look Once,名字就已经说明了一切把检测问题转化成回归问题,一个CNN就搞定了可以对视频进行实时监测,应用领域非常广。
2023-07-31 11:56:55 258 1
原创 深度学习网络各自特点汇总----LeNet、AlexNet、VGGNet、ResNet、ShuffleNet
使用 Sigmoid 和 Tanh 函数作为激活函数。常见的层级排列:一个或多个卷积层后有一个池化层。随着通道高度和宽度的缩小,通道数量也在增加。
2023-07-29 18:40:28 771
原创 Python3 zip() 函数
如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
2023-07-29 15:23:01 79
原创 pytorch中在定义函数时,看到有 -> 符号是什么意思
在python代码中看到在定义函数时,在def那一行后面会加一个。上面代码期待的类型为Tensor。2. 比较容易用其他语言改写。其实它有个专门的名词叫。1. 增加代码可读性;
2023-07-29 10:51:44 178
原创 常见卷积的区别,eg:普通卷积,Depthwise卷积,Pointwise卷积,Depthwise separable convolution
那么卷积核数需要与输入的通道数相等,输出的通道数也不变,等于输入的通道数,等于卷积核数。普通卷积是,一个卷积核与input的所有通道都进行卷积,然后不同通道相同位置卷积后的结果再相加,如下图所示,:⾸先,每个通道内对应位置元素相乘再相加,最后计算所有通道的总和作为最终结果。卷积核的Channel通道数等于Input输⼊的通道数,Output输出的通道数等于卷积核的个数。Pointwise Convolution的运算与常规卷积运算相似,它的卷积核的尺寸为 1×1×M,M为上一层的通道数。
2023-07-29 10:27:29 299
原创 Pytorch中json格式的load、loads、dump、dumps的用法总结(简洁版)
loads是对字符串进行操作的,因此loads的主要参数是字符串,调用格式通常为 load(str)load是对文件进行操作的,因此load的主要参数是打开的文件,调用格式通常为 load(f)dump是将python对象转成json格式存入文件,主要格式是dump(obj, f)dumps是将python对象转成json格式的字符串,主要格式是dumps(obj)json load/loads是将json格式的数据转成python对象,具体来说。
2023-07-27 15:05:17 412 1
原创 Yolo-V2 特点
V2 -- BNV2版本舍弃了Dropout,卷积后全部加入Batch Normalization 网络的每一层的输入都做了归一化处理,收敛相对更容易 经过Batch Normalization处理后的网络会提升2%的mAP 从现在的角度来看,Batch Normalization已经成为网络必备处理V2 -- 更大的分辨率V2训练是用的是224*224,测试是使用的是448*448 可能导致模型水土不服,V2训练时额外有进行了10 次448*448的微调 使用高分辨率分类器后,
2023-07-26 19:32:41 87 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人