这5种动态炫酷图,用Python可以这样画啊!

在这里插入图片描述

数据可以帮助我们描述这个世界、阐释自己的想法和展示自己的成果,但如果只有单调乏味的文本和数字,我们却往往能难抓住观众的眼球。而很多时候,一张漂亮的可视化图表就足以胜过千言万语。本文将介绍
5 种基于 Plotly 的可视化方法,你会发现,原来可视化不仅可用直方图和箱形图,还能做得如此动态好看甚至可交互。

对数据科学家来说,讲故事是一个至关重要的技能。为了表达我们的思想并且说服别人,我们需要有效的沟通。而漂漂亮亮的可视化是完成这一任务的绝佳工具。本文将介绍 5 种非传统的可视化技术,可让你的数据故事更漂亮和更有效。这里将使用 Python 的 Plotly 图形库(也可通过 R 使用),让你可以毫不费力地生成动画图表和交互式图表。
在这里插入图片描述
那么,Plotly 有哪些好处?Plotly 的整合能力很强:可与 Jupyter Notebook 一起使用,可嵌入网站,并且完整集成了 Dash——一种用于构建仪表盘和分析应用的出色工具。

需要Python学习资料可以加群1084028245,群里资料免费赠予大家!(书籍太多,我就随便发一点咯!)​

在这里插入图片描述

启动

如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装:

pip install plotly

安装完成后,就开始使用吧!

                                                     动画

在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly 动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:
在这里插入图片描述

代码如下:

import plotly.express as px
from vega_datasets import data
df = data.disasters()
df = df[df.Year > 1990]
fig = px.bar(df,
             y="Entity",
             x="Deaths",
             animation_frame="Year",
             orientation= h ,
             range_x=[0, df.Deaths.max()],
             color="Entity")
# improve aesthetics (size, grids etc.)
fig.update_layout(width=1000,
                  height=800,
                  xaxis_showgrid=False,
                  yaxis_showgrid=False,
                  paper_bgcolor= rgba(0,0,0,0) ,
                  plot_bgcolor= rgba(0,0,0,0) ,
                  title_text= Evolution of Natural Disasters ,
                  showlegend=False)
fig.update_xaxes(title_text= Number of Deaths )
fig.update_yaxes(title_text=  )
fig.show()

只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:

import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(
    df,
    x="gdpPercap",
    y="lifeExp",
    animation_frame="year",
    size="pop",
    color="continent",
    hover_name="country",
    log_x=True,
    size_max=55,
    range_x=[100, 100000],
    range_y=[25, 90],

    #   color_continuous_scale=px.colors.sequential.Emrld
)
fig.update_layout(width=1000,
                  height=800,
                  xaxis_showgrid=False,
                  yaxis_showgrid=False,
                  paper_bgcolor= rgba(0,0,0,0) ,
                  plot_bgcolor= rgba(0,0,0,0) )
                                                      太阳图

太阳图(sunburst chart)是一种可视化 group by 语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。

假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重 group by 语句可以通过可视化来更有效地展示。在这里插入图片描述

这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的 parents 参数)并分配对应的值即可,这在我们案例中即为 group by 语句的输出。

import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
df = px.data.tips()
fig = go.Figure(go.Sunburst(
    labels=["Female", "Male", "Dinner", "Lunch",  Dinner  ,  Lunch  ],
    parents=["", "", "Female", "Female",  Male ,  Male ],
    values=np.append(
        df.groupby( sex ).tip.mean().values,
        df.groupby([ sex ,  time ]).tip.mean().values),
    marker=dict(colors=px.colors.sequential.Emrld)),
                layout=go.Layout(paper_bgcolor= rgba(0,0,0,0) ,
                                 plot_bgcolor= rgba(0,0,0,0) ))

fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
                  title_text= Tipping Habbits Per Gender, Time and Day )
fig.show()

现在我们向这个层次结构再添加一层:
在这里插入图片描述
为此,我们再添加另一个涉及三个类别变量的 group by 语句的值。

import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
df = px.data.tips()
fig = go.Figure(go.Sunburst(labels=[
    "Female", "Male", "Dinner", "Lunch",  Dinner  ,  Lunch  ,  Fri ,  Sat ,
     Sun ,  Thu ,  Fri  ,  Thu  ,  Fri   ,  Sat   ,  Sun   ,  Fri    ,  Thu   
],
                            parents=[
                                "", "", "Female", "Female",  Male ,  Male ,
                                 Dinner ,  Dinner ,  Dinner ,  Dinner ,
                                 Lunch ,  Lunch ,  Dinner  ,  Dinner  ,
                                 Dinner  ,  Lunch  ,  Lunch 
                            ],
                            values=np.append(
                                np.append(
                                    df.groupby( sex ).tip.mean().values,
                                    df.groupby([ sex ,
                                                 time ]).tip.mean().values,
                                ),
                                df.groupby([ sex ,  time ,
                                             day ]).tip.mean().values),
                            marker=dict(colors=px.colors.sequential.Emrld)),
                layout=go.Layout(paper_bgcolor= rgba(0,0,0,0) ,
                                 plot_bgcolor= rgba(0,0,0,0) ))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
                  title_text= Tipping Habbits Per Gender, Time and Day )

fig.show()
                                                 平行类别

另一种探索类别变量之间关系的方法是以下这种流程图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。
在这里插入图片描述
代码如下:

import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df[ Genre_id ] = df.Major_Genre.factorize()[0]
fig = px.parallel_categories(
    df,
    dimensions=[ MPAA_Rating ,  Creative_Type ,  Major_Genre ],
    color="Genre_id",
    color_continuous_scale=px.colors.sequential.Emrld,
)
fig.show()
                                                 平行坐标图

平行坐标图是上面的图表的连续版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。
在这里插入图片描述
代码如下:

import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df[ Genre_id ] = df.Major_Genre.factorize()[0]
fig = px.parallel_coordinates(
    df,
    dimensions=[
         IMDB_Rating ,  IMDB_Votes ,  Production_Budget ,  Running_Time_min ,
         US_Gross ,  Worldwide_Gross ,  US_DVD_Sales
    ],
    color= IMDB_Rating ,
    color_continuous_scale=px.colors.sequential.Emrld)
fig.show()
                                                  量表图和指示器

在这里插入图片描述
量表图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。

指示器在业务和咨询中非常有用。它们可以通过文字记号来补充视觉效果,吸引观众的注意力并展现你的增长指标。

import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
    domain = { x : [0, 1],  y : [0, 1]},
    value = 4.3,
    mode = "gauge+number+delta",
    title = { text : "Success Metric"},
    delta = { reference : 3.9},
    gauge = { bar : { color : "lightgreen"},
         axis : { range : [None, 5]},
              steps  : [
                 { range : [0, 2.5],  color : "lightgray"},
                 { range : [2.5, 4],  color : "gray"}],
          }))
fig.show()

最后 如果你还是不会编写这个脚本,可以关注小编+转发此文,就可以拿到完成代码,或者找我指导实现定位!

已经在学习Python,或者想学Python的小伙伴们,如需要文中书籍、Python学习资料可以加群1084028245,小编将免费送给大家!在这里插入图片描述在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值