UCF Local Programming Contest Round 1A G题:Trading Cards2021年(网络流、最小割)

本文介绍了一种解决最大收益问题的方法,通过将收益计划和所需物品转化为最大权闭包图模型,利用深度优先搜索和最小割算法求解。博主详细展示了如何通过代码实现从输入的成本和收益计划中找到最优方案,最终输出总收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:传送门
资料:学习
思路:最大权闭包子图题目,类似于二分图,两边的点集X和点集合Y,点集X包含的是全部收益计划(一个计划一个点),点集Y包含的是全部所需物品(一个物品一个点),每个收益计划点 向 该收益计划需要的全部物品各连一条边,容量都为INF;起点S 对于每个计划连一条边,容量为该计划收益;每个物品对终点T连一条边,容量物品的成本,转换问题完成
代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long int ll;
typedef pair<int,ll> P;
const ll maxn=1e6+10;
const ll INF=0x3f3f3f3f3f3f3f;
const int inf=0x3f3f3f3f;
const double mod=1e-6;
const ll maxm=5e4+5;
ll n;
ll st=0,ed=102;
ll a[maxn];
ll sum;//正权的值
ll ver[maxn],edge[maxn],nex[maxn],head[maxn],now[maxn];
ll d[maxn];
ll tot=1;
void add(int x,int y,int w){
    ver[++tot]=y,edge[tot]=w,nex[tot]=head[x],head[x]=tot;
    ver[++tot]=x,edge[tot]=0,nex[tot]=head[y],head[y]=tot;
}
bool bfs(){
    memset(d,0,sizeof(d));
    queue<ll> que;
    que.push(st);
    d[st]=1;
    now[st]=head[st];
    while(!que.empty()){
        ll u=que.front();
        que.pop();
        //cout<<u<<endl;
        for(int i=head[u];i;i=nex[i]){
            if(!d[ver[i]]&&edge[i]){
                que.push(ver[i]);
                d[ver[i]]=d[u]+1;
                now[ver[i]]=head[ver[i]];
                if(ver[i]==ed)return 1;
            }
        }
    }
    return 0;
}
int dfs(ll x,ll flow){
    if(x==ed)return flow;
    ll res=flow;
    int i,k;
    for(int i=now[x];i&&res;i=nex[i]){
        if((d[ver[i]]==d[x]+1)&&edge[i]){
            k=dfs(ver[i],min(res,edge[i]));
            if(!k)d[ver[i]]=0;
            edge[i]-=k;
            edge[i^1]+=k;
            res-=k;
        }
    }
    now[x]=i;
    return flow-res;
}
int solve(int s,int d){
    int flow=0;
    int maxflow=0;
    while(bfs()){
        while(flow=dfs(st,inf))maxflow+=flow;
        //cout<<maxflow<<endl;;
    }
    return maxflow;
}
int main(){
    cin>>n;
    for(int i=1;i<=n;i++){//成本
        int x,y;
        cin>>x>>y;
        sum+=x*y;
        add(i,ed,x);
    }
    ll m;
    cin>>m;
    for(int i=1;i<=m;i++){//收益计划
        ll num,val;
        cin>>num>>val;
        sum+=val;
        add(st,i+n,val);
        while(num--){
            int x;
            cin>>x;
            add(i+n,x,inf);
        }
    }
    cout<<sum-solve(st,ed);
    return 0;

}

相似题目:P4174 [NOI2006]最大获利

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

容艾

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值