[项目实训]——Video-Summarization-Pytorch

本文介绍了一个基于深度强化学习的无监督视频摘要项目。通过深度摘要网络(DSN),对视频帧进行概率预测,选择关键帧生成摘要。DSN采用卷积网络作为编码器,双向递归神经网络作为解码器,通过强化学习和多样性-代表性奖励函数进行训练,以实现视频的多样性和代表性。最终,DSN用于测试视频的摘要生成,动态规划解决0/1背包问题以优化摘要长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介:针对无监督视频摘要的深度强化学习,具有多样性代表性奖励
再简介:经过分析,是对视频片段进行特征提取,并以此训练一个模型,然后对视频进行摘要分割,而其中过程中的有一个能存储关键帧的数组,则是需要的结果。(项目利用的方法)

项目目标以及算法的介绍

本项目中旨在的目标是关键帧的提取,并根据提取的关键帧来获取关键视频片段。
首先详细介绍Video-Summarization-Pytorch,这是一个视频摘要技术。所谓视频摘要,就是将视频拆解为简短的片段。采取的方法是开发了一个深度摘要网络(DSN)来进行视频摘要。这个DSN为每个视频帧都预测一个概率,然后根据概率分布选择帧,同时这也是我们需要的获取关键帧所需要的关键步骤。
接下来是论文的分析

学习过程

论文作者将视频摘要描述为一个顺序决策过程。同时开发了一个深度摘要网络(DSN)来预测视频帧的概率,并根据预测的概率分布来决定选择哪些帧。论文作者提出了一个端到端的、基于强化学习的DSN训练框架,其中作者设计了一个多样性-代表性reward函数,它直接评估生成摘要的多样性和代表性,如图所示。
在这里插入图片描述
通过强化学习训练深度总结网络(DSN)。DSN接收一个视频Vi并采取行动a(即一系列二进制变量),其中视频的部分被选择为摘要S。反馈奖励R(S)是基于摘要的质量,即多样性和代表性。

Deep Summarization Network

(DSN)采用了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值