试题 算法训练 结点选择

一道关于树形动态规划的算法训练题目,目标是在一棵有n个节点的树中,每个节点有正整数权值,选取节点使得权值和最大。选择一个节点后,其相邻节点不能被选。通过邻接表存储无向图,利用树形DP遍历树并更新状态,避免回环,最终找到最大权值和。
摘要由CSDN通过智能技术生成

试题 算法训练 结点选择


问题描述
有一棵 n 个节点的树,树上每个节点都有一个正整数权值。如果一个点被选择了,那么在树上和它相邻的点都不能被选择。求选出的点的权值和最大是多少?

输入格式
第一行包含一个整数 n 。

接下来的一行包含 n 个正整数,第 i 个正整数代表点 i 的权值。

接下来一共 n-1 行,每行描述树上的一条边。

输出格式
输出一个整数,代表选出的点的权值和的最大值。
样例输入
5
1 2 3 4 5
1 2
1 3
2 4
2 5
样例输出
12
样例说明
选择3、4、5号点,权值和为 3+4+5 = 12 。
思路:
我们看完这道题后就知道有点和没有上司的舞台相似,但是他是个无向图,所以我们需要存储树时要同时把2点都存储进去,那么我们需要考虑的就是如何去遍历树?我们的解题方案也就是树形动态规划了!
我们首先建立一个dp[i][2] dp[i][1]表示 当这个点选择后的值 dp[i][0]表示 当这个点没有选择后的值
然后先把每个点的取值存储到dp[i][1]里面。(dp[k][1] = k点权值;)
因为图的存储有很多方法,在这个我用的是邻接表,不知道怎么用的可以去网上查下图的存储。我们存储时要注意要存储当时的2个节点的位置因为他是无向图。
因为他是无向图我们需要防止他死循环,所以我们当父节点的子节点的子节点还是父节点的话我们就不让他进入函数运算。
我们知道当本节点选择后他的树上和它相邻的点都不能被选择所以我们转移方程就是:
dp[x][1]+=dp[z1][0]
那当他没有选择本节点就是: dp[x][0]+=max(dp[z1][1],dp[z1][0]) 可以和他子节点选择时和没有选择时比较大小然后我们去最大的一个即可。 z1是x的子节点。(数据跑不完递归上线了)
程序:

n=int(input())
dp=[[0 for i in  range(2)]for i in range(n+2)]  #初始化
p=list(map
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值