探索大语言模型微调的奥秘:<<xtuner微调的LLM>>理论和实践课程回顾
在汪老师的带领下,我们开启了一段探索大语言模型微调的奇妙旅程。汪老师以其独特的教学魅力,将那些看似遥远和抽象的理论转化为易于理解和掌握的知识,让我们在知识的海洋中畅游,豁然开朗。
打破神话,重塑认知: 我最大的收获是认识到,尽管大语言模型(LLM)经过海量数据的洗礼,它们并不像人类一样拥有常识。我曾误以为这些模型无所不能,仿佛它们天生就具备了对世界的基本理解。然而,课程让我明白,未经特定问答对的高质量训练,这些模型无法准确回答人类的问题。这是否意味着它们缺乏人类的联想和类比能力呢?只有当AI科学家们为它们设定了特定的问答模板,并用高质量的语料进行训练后,它们才得以展现出接近人类的问答能力。对于这一点,我很好奇大佬和专家们是如何看待的?
课程精华回顾:
微调的启航:X Tune模型与课程概览
汪老师首先揭开了X Tune大语言模型微调的神秘面纱,介绍了增量预训练和指令微调这两种微调范式。他不仅强调了数据标准化的重要性,还突出了对话模板在微调过程中的核心作用。
微调的加速器:X2工具箱的魔力
接着,汪老师向我们展示了X2——一款轻巧、快速的一键启动微调工具箱。它支持多种微调算法和硬件,让我们的微调过程变得轻松自如。通过实例演示,我们见证了模型组装后的即时效果,以及对话模板在训练中的巧妙应用。
X Tuner:微调的加速引擎
汪老师进一步介绍了X Tuner工具,它能够加速大语言模型的训练和对话过程。从数据预处理到多模态大模型的构建,X Tuner提供了全方位的支持。我们学习了如何通过优化参数提升GPU的利用率,以及X Tuner内置的flash attention和deep speed zero加速技术。
多模态模型:图像与文本的和谐共鸣
在多模态模型的学习中,汪老师带领我们探索了图像与文本相结合的预测艺术。我们了解到,通过增加图像输入,模型能够更精准地预测输出文本。汪老师详细讲解了如何构建文本问题与图像输入的数据对,以及如何训练出具有视觉能力的image projector模型。
微调实操:X推的详细步骤
最后,汪老师以X推为例,详细讲解了微调的具体步骤。从准备开发环境、安装环境到实际操作,每一步都细致入微,确保我们能够跟随他的指导,一步步实现模型的微调。
通过这次课程,我们不仅获得了理论知识,更学会了如何将这些知识应用于实践。这是一次深刻的学习体验,让我们对大语言模型微调有了更全面的理解。