量化笔试题整理

持续更新ING

一、计算末位零

1、100的阶乘(100!)后面有多少个零?

答:24个零,关键拆解1-100因式分解含有多少个5.

二、 由函数求未知数

1、如果 x x x x . . . x^{x^{x^{x^{...}}}} xxxx...=2,那么x是多少?

答:x= 2 \sqrt{2} 2

三、博弈策略

(A)解秘未知信息

1、来自不同银行的8位宽客聚在一起喝酒。他们都想知道在坐8个人的平均工资。然而,每个人都不愿意向其他人透露自己的薪水。你能想出一个策略让这8个人在不知道别人薪水的情况下计算出在座各位稍微平均工资吗?

答:让第一个宽客选择一个随机数a,把这个随机数加到他/她的工资中,假设这个数是b。第二个宽客把他/她自己的工资加到b中,按照这个方法,依次到第八个宽客,假设最后结果是c,同时第八个宽客把结果c再给到第一个宽客手中。然后第一个宽客从c中减去a得到d,最后将d除以8,就得到了大家的平均工资。

2、天堂地狱两扇门,两个门卫,一个说真话,一个说假话,只能对一个人提问一次,如何找出天堂之门?
答:因为真“与”假依然得到假,可以通过运算找出。

问门卫A:“我如果问门卫B是否能通往天堂,他会回答我是的,对吗?”

如果A回答对,那么A对应的就是通往天堂的门;
否,B对应的是通往天堂的门。

3、小明和小红知道老师的生日是以下十个日期之一:

  • 03/04, 03/05, 03/08
  • 06/04, 06/07
  • 09/01, 09/05
  • 12/01, 12/02, 12/08

老师告诉小明生日的月份,告诉小红C生日是几号。在那之后,小明说:“我不知道老师的生日,小红也不知道它是什么。” 在听到你说的话,小红回答:“我之前不知道老师生日,但是我现在知道了。” 小明笑着说:“现在我也知道了。” 问老师的生日是几月几号?

答:9月1日。两人的对话,每一句都有用,逐一排除即可。

4、有25只马,每个马的速度都和其它马不一样。因为赛场只有5个赛道,所以一次比赛最多五只马,你需要找出最快的三只马,需用最少的比赛场次是多少?

答:至少7场。

  • 首先随机分每五匹一组【A,B,C,D,E】,举办五场比赛逐出每组的前三名,记作【A1,A2,A3】,淘汰每组最后两名,其他组类似。
  • 每组的第一名进行一场比赛,假设结果(从快到慢)排名是【A1,B1,C1,D1,E1】,逐出所有马中最快的那匹A1,淘汰最后两名D1和E1。
  • 那么,再举办一场比赛【A2,A3,B1,B2,C1】参加,就可以决出第二名和第三名。

5、一个袋子里面有20个蓝色球和14个红色的球,每次可以随机去拿两个球(每个球抽到概率相等)。取完球不放回,如果颜色相同,你可以另外放一个蓝色到袋子里面,如果颜色不同,你可以加一个红色到袋子,假设你有无止尽的红篮球供应,你可以重复抽,最后剩下的是什么颜色的球呢,如果是20个蓝球和13个红色球呢?

答:这道题很有意思。

  • 两个都是蓝色(B,R)变成(B-1,R)
  • 两个都是红色 (B,R)变成(B+1,R-2)
  • 一蓝一红 (B,R)变成(B-1,R)
    可以观察到,每玩一次就会少一个球,红球要么少两个,要么不变。所以,如果开始红球个数是偶数,那么剩下的就是蓝球;如果开始红球个数是奇数,那么剩下的就是红球。

四、数字游戏

1、 一个钟表(按顺时针方向编号1-12)从墙上掉了下来,摔成三块。你会发现每一块上的数字之和是相等的。那么,每一块上的数字是多少呢?(不允许奇形怪状的碎块)

答:1+…+12=13*12/2=78,78/3=26(每组和) 。因为11+12+1+2=26,5+6+7+8=26,所以剩下的为一组3+4+9+10=26。

2、假设有98个不同的整数从1到100。有什么好的方法找出两个缺失的整数在[1,100]内?
答:假设缺失的两个整数分别为x和y。
∑ n = 1 100 n = x + y + ∑ i = 1 98 z i = 101 × 50 = 5050 \sum_{n=1}^{100}n=x+y+\sum_{i=1}^{98}z_{i}=101\times50=5050 n=1100n=x+y+i=198zi=101×50=5050
∑ n = 1 100 n 2 = x 2 + y 2 + ∑ i = 1 98 z i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 = 338350 \sum_{n=1}^{100}n^{2}=x^2+y^2+\sum_{i=1}^{98}{z_{i}}^{2}=\frac{n(n+1)(2n+1)}{6}=338350 n=1100n2=x2+y2+i=198zi2=6n(n+1)(2n+1)=338350
因为
( x + y ) 2 = ( 5050 − ∑ i = 1 98 z i ) 2 = a 2 {(x+y)}^2={(5050-\sum_{i=1}^{98}z_{i})}^2=a^2 (x+y)2=(5050i=198zi)2=a2

x 2 + y 2 = 338350 − ∑ i = 1 98 z i 2 = b x^2+y^2=338350-\sum_{i=1}^{98}{z_{i}}^{2}=b x2+y2=338350i=198zi2=b
所以
2 x y = ( 5050 − ∑ i = 1 98 z i ) 2 − ( 338350 − ∑ i = 1 98 z i 2 ) = a 2 − b 2xy={(5050-\sum_{i=1}^{98}z_{i})}^2-(338350-\sum_{i=1}^{98}{z_{i}}^{2})=a^2-b 2xy=(5050i=198zi)2(338350i=198zi2)=a2b

( x − y ) 2 = x 2 + y 2 − 2 x y = b − ( a 2 − b ) = 2 b − a 2 (x-y)^2=x^2+y^2-2xy=b-(a^2-b)=2b-a^2 (xy)2=x2+y22xy=b(a2b)=2ba2
得到
x − y = 2 b − a 2 x-y=\sqrt{2b-a^2} xy=2ba2
因此
x = a + 2 b − a 2 2 , y = a − 2 b − a 2 2 x=\frac{a+\sqrt{2b-a^2}}{2}, y=\frac{a-\sqrt{2b-a^2}}{2} x=2a+2ba2 ,y=2a2ba2

3、已知1-40 40个数 ,由1到40中选出最小的集合,使得这个集合的数加减可以得到1-40所有的数,每个数只能用一次。比如 {1,2}可以得到1+2=3但是不能得到1+2+2=5。

答:最小集合是【1,3,5,10,20】。理由:【1,3,5】可以组成九以内所有的数,

  • 2=3-1
  • 4=3+1
  • 6=1+5
  • 7=3+5-1
  • 8=3+5
  • 9=1+3+5

那么11-19里的数字可以通过加10完成,21-29里的数字可以通过加20完成,30=10+20,31=11+20。写到这里,自己也不确定了,因为40拆分不了,个人认为至少应该包含六个数字,再加一个2进去。

五、玩游戏付钱

1、两个玩一个游戏,甲掷骰子除了1以外的数字第一次出现时,乙付给甲对应数字的钱数,游戏结束。那么这个游戏的期望回报是多少?

答: ∑ i = 2 i = 6 i 5 = 4 \frac{\sum_{i=2}^{i=6}i}{5}=4 5i=2i=6i=4

2、赌场给出一个使用52张卡牌的游戏。规则:每次翻转两张卡牌。如果都是黑色,它们就属于发牌者的牌堆;如果它们都是红色的,它们就属于你的牌堆;如果一黑一红就舍弃。这个过程一直重复,直到52张牌发完。如果你的牌堆牌更多,赢100刀,否则你什么都得不到。发牌者允许你商量愿意为这个游戏付出的最高价格,你将会为这个游戏付多少钱?

答:因为最后舍弃的都是一黑一红,对手牌堆有多少张黑牌,玩家牌堆就有多少张红牌,所以最后两人的牌堆里的数量是相同的。将会为这个游戏付零刀。

六、金融概念相关

1、 如果一只股票每年连续复利收益率的标准差是10%,那么连续复利4年股票收益率的标准差是多少?

答:连续复利收益率遵循布朗运动,而每年独立随机变量的和的方差=方差的和。这意味着4年的 σ 2 \sigma^2 σ2 等于1年 σ 2 \sigma^2 σ2的4倍。因此,4年的 σ \sigma σ 是1年 σ \sigma σ 的2倍,所以答案就是20%。

2、从利率的期限结构来看,5年即期利率为每年10%,10年即期利率为每年15%。那么从第5年到第10年的隐含远期收益率是多少?

答:假设购买5年即期产品,那么赎回额是本金 × 1. 1 5 \times1.1^5 ×1.15。假设购买10年即期产品,那么赎回额是本金 × 1.1 5 10 \times1.15^{10} ×1.1510。那么第5年(赎回的本金和收益投放到新产品)到第10年的隐含远期收益率是 1.1 5 10 1. 1 5 − 1 \frac{1.15^{10}}{1.1^5}-1 1.151.15101

3、解释说明债券的“yield”和“rate of return”的区别。

答:区别在于行权的时间。债券的“yield”是“internal rate of return”或“yield-to-maturity”或“promised- yield”。如果你持有债券到期,那就是你的收入。债券的“rate of return”是已实现现金流的内部收益率对持有者,如果债券在到期日之前出售,(已实现的)“rate of return”可以为正,可以为负。假设你购买了一份promised 5%的债券如果你卖掉该债券,你的资本将受损失并且得到一个负的“rate of return”。然而,如果你持有债券直至到期,你将会得到promised 5%。

4、 什么是混沌理论?可以用它来预测股票收益率吗?如果可以,请说明为什么?

答:chaos theory也就是俗称蝴蝶效应,现时一个小小的扰动会给未来带来巨大的变化和影响,它的核心在于不可预测性(unpredictable)。混论理论(并列相对论,量子力学)在自然科学中是伟大的,但它在金融中却是失败的。

七、编程相关

1、Python中单下划线和双下划线分别是什么?
__name__:一种约定,Python内部的名字,用来与用户自定义的名字区分开,防止冲突。
_name:一种约定,用来指定变量私有。
__name:解释器用_classname__name来代替这个名字用以区别和其他类相同的命名。
延伸

八、统计相关

1、样本方差的分母为什么是n-1,而不是n?
答:关系到样本方差的无偏估计量。

九、随机组合

1、有2个骰子,每一个骰子有是6面的正方体,每一面上只能放0到9的数字一个,问这2个骰子如何组合,可以达到显示日历的效果(从01-31)?

答:两个骰子都应该含有0,1,2,那么还剩6个位置,需要放7个数字,考虑到6倒过来就是9,所以总共有 C 6 3 2 ∗ 2 = 20 \frac{C_{6}^3}{2}*2=20 2C632=20种可能性,和原答案不一样,因为考虑到6和9算不同的两种组合。

十、几何、立体问题

1、你能将53块1x1x4的砖头装进6x6x6盒子吗?

答:不能,将盒子拆分成 2 × 2 × 2 2\times2\times2 2×2×2,相邻的两个方块分别刷成黑色和白色,最后要么是13黑14白,要么是14黑,13白。其中一组黑白可以放下四块1x1x4的砖头,还剩1黑或者1白,什么也放不下。

附录:题目详解参考

REF 1
REF 2
REF 3

  • 5
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值