在安装 PyTorch 和相关组件(例如 torchaudio)时,conda
和 pip
都是常见的工具,但它们的安装包和安装方式有所不同。
区别
-
Conda 安装包 (
.tar.bz2
):- 这是一个压缩文件,包含了 conda 专用的安装包,可以直接用
conda install
安装,通常是为特定的 Python 版本和 CUDA 版本预编译的。 conda
会处理环境依赖,自动配置编译器和其他底层库,使得安装更加稳定可靠。
- 这是一个压缩文件,包含了 conda 专用的安装包,可以直接用
-
Pip 安装包 (
.whl
,.tar.gz
):pip
安装包通常是 Python wheel (.whl
) 文件或源代码 (.tar.gz
) 文件。pip
安装依赖较为直接,但有时需要用户自己处理依赖库的兼容性问题,尤其是与 CUDA 相关的库。
为什么 pip install
不适用于 .tar.bz2
?
-
包格式不同:
.tar.bz2
是 conda 专用的格式,包含了 conda 所需的元数据和依赖信息。pip
处理的文件格式通常是.whl
或.tar.gz
。
-
依赖管理:
conda
会管理环境中的所有依赖,并确保它们的兼容性,适用于复杂环境配置。pip
安装主要依赖 Python 包索引(PyPI),无法直接从 conda 包中读取依赖信息。
-
环境隔离:
conda
环境更适合科学计算和深度学习,因为它能提供与系统隔离的环境,可以独立处理不同的 CUDA 和 cuDNN 版本。pip
虽然也可以在虚拟环境中工作,但在处理系统级依赖时可能需要更多手动配置。
如何安装 torchaudio
?
-
使用 Conda 安装(推荐):
如果你已经有
.tar.bz2
文件,可以使用conda
的--offline
参数来离线安装:conda install --offline torchaudio-2.1.2-py310_cu121.tar.bz2
这种方法会确保所有依赖库正确安装和配置。
-
使用 Pip 安装:
如果你更习惯使用
pip
或需要在 pip 环境中安装torchaudio
,你可以直接从 PyPI 安装:pip install torchaudio
请注意,pip 安装可能需要手动安装与 CUDA 相关的库:
pip install torch torchaudio --index-url https://download.pytorch.org/whl/cu121
这样可以确保你安装了匹配的 CUDA 版本。
总结
.tar.bz2
文件是专为 conda 设计的包,不能用pip
安装。conda
提供了一个完整的生态系统和包管理工具,适合处理复杂的依赖和环境配置,特别是在深度学习中。pip
安装更直接,适合那些对依赖控制要求较低的情况。