- 博客(6)
- 收藏
- 关注
原创 手肘法实现——python
阿萨德 最近在接单的过程中遇到顾客不知道自己的kmeans算法应该聚成多少类的时候,上网查了一下了解到了手肘法。大致思想是通过迭代来寻找模型最佳SSE位置。具体代码如下:import pandas as pdimport numpy as npfrom sklearn.cluster import KMeansimport matplotlib.pyplot as pltdata1 = pd.read_excel('手肘法.xlsx')# '利用SSE选择k'SSE = [] #..
2022-05-11 21:14:56 3251 4
原创 基于python的自变量选择—所有子集回归、后退法、逐步回归(非调库)
1、为什么需要自变量选择?一个好的回归模型,不是自变量个数越多越好。在建立回归模型的时候,选择自变量的基本指导思想是少而精。丢弃了一些对因变量y有影响的自变量后,所付出的代价就是估计量产生了有偏性,但是预测偏差的方差会下降。因此,自变量的选择有重要的实际意义。2、自变量选择的几个准则(1)自由度调整复决定系数达到最大其中,n为样本量,p为自变...
2022-03-11 09:37:49 5537 9
原创 PCA主成分分析+RV系数
一、观察数据数据由旷课次数、迟到次数、早退次数等多个指标组成。而我们需要做的pca则是需要将众多数据结合起来提取出主要的几个主成分。二、实现过程import pandas as pdimport numpy as npimport randomimport mathimport matplotlib.pyplot as pltdf = pd.read_excel('平时成绩模拟数据.xls')# print(df)data = np.array(df)#k为想要的主成分个
2022-02-22 10:14:14 1881
原创 基于BP神经网络使用开盘价、最高价、最低价预测收盘价
以下是本文所用数据~~~一、直接上手撸代码import pandas as pdimport numpy as npimport mathdata = pd.read_excel('上证指数.xls')data = np.array(data.iloc[3:-1,1:])e = 1ita = 0.0035#sigmoiddef sigmoid(x): return 1/(1+np.exp(-x))#sigmoid导函数def sigmoid_derivatio.
2022-02-17 20:27:18 3258 6
原创 python实现kmeans聚类
目录一、先上手撸代码!1、导库、导数据2、核心算法3、可视化部分二、调库代码!(sklearn)一、先上手撸代码!1、首先是导入所需要的库和数据import pandas as pdimport numpy as npimport randomimport mathimport matplotlib.pyplot as plt# 这两行代码解决 plt 中文显示的问题plt.rcParams['font.sans-serif'] = ['SimHei'].
2022-02-17 20:14:29 26198 39
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人