利用pandas编程,使得输入为:{'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D') 输出为利用pandas编程,使得输入为:{'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D') 输出为利用pandas编程,使得输入为:{'Region': ['East', 'South', 'West', 'East', 'South'], 'Date': [Timestamp('2020-01-01 00:00:00', freq='D'), Timestamp('2020-02-02 00:00:00', freq='D'), Timestamp('2020-03-03 00:00:00', freq='D'), Timestamp('2020-01-04 00:00:00', freq='D')输出为Region Date East 2020-01-31 972 South 2020-02-29 807 2020-04-30 823 West 2020-03-31 459 Name: Sales, dtype: int64