POJ 3259 Wormholes(最短路——Bellman-ford)

A - Wormholes
While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ’s farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1…N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.
As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself 😃 .
To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.
Input
Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2…M+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2…M+W+1 of each farm: Three space-separated numbers (S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.
Output
Lines 1…F: For each farm, output “YES” if FJ can achieve his goal, otherwise output “NO” (do not include the quotes).
Sample Input
2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8
Sample Output
NO
YES
Hint
For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

题意描述:
John的农场里N块地,M条路连接两块地,W个虫洞;路是双向的,虫洞是一条单向路,会在你离开之前把你传送到目的地,就是当你过去的时候时间会倒退Ts。要求判断会不会在从某块地出发后又回来,看到了离开之前的自己。

解题思路:
其实就是想让我们判断回路中是否存在一个负环,用bellman-ford算法来求负环,松弛结束后判断是否存在最短路,不存在则有负环。

bellman-ford:

#include <stdio.h>
#define inf 0x3f3f3f3f 
struct Edge
{
    int u, v, w;
}e[11000];//邻接表
int  bellman(int x);
void relax(int u,int v,int w);
void add(int u, int v, int w);
int dis[11000];
int n, m, W, k;
int main()
{
    int i,T,u,v,w;
    scanf("%d",&T);
    while(T--)
    {
    k=1;
    scanf("%d%d%d",&n,&m,&W);
    for(i=1;i<=m;i++)//路(双向的)
    {
        scanf("%d%d%d",&u,&v,&w);
        add(u, v, w);
        add(v, u, w);
    }
    for(i=1;i<=W;i++)//虫洞(单向的) 
    {
        scanf("%d%d%d",&u,&v,&w);
        add(u, v, -w);
    }
        if(bellman(n))
        {
        	printf("YES\n");
		}
        else
        {
        	printf("NO\n");
		}
    }
    return 0;
}

int  bellman(int x)
{
	int i,j;
    for(i=1;i<=n;i++)
    {
    	dis[i]=inf;
	}
    //dis[x]=0;
    for(i=0;i<n;i ++)//松弛n-1次
    {
        for(j=1;j<=k;j++)//遍历每一条边
        {
    		relax(e[j].u,e[j].v,e[j].w);
        }
    }
    
    for(i=1;i<=k;i++)//负环
    {
        if(dis[e[i].v]>dis[e[i].u]+e[i].w)
        {
        	return 1;
		}
    }
    return 0;
}
void relax(int u,int v,int w)
{
    if(dis[v] > dis[u] + w)
        dis[v] = dis[u] + w;
}
void add(int u, int v, int w)
{
    e[k].u = u, e[k].v = v, e[k++].w = w;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沐雨风栉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值