【CVPR2022】DIFNet: Boosting Visual Information Flow for Image Captioning

DIFNet是一个双信息流网络,结合分割特征和网格特征以增强图像描述任务的性能。通过迭代独立层归一化(IILN)模块,DIFNet能有效融合两种视觉信息,并通过跳跃连接加强信息流,提高生成描述的准确性与视觉相关性。

【CVPR2022】DIFNet: Boosting Visual Information Flow for Image Captioning

附:
论文下载: 论文下载
源码链接: 源码链接

论文主要贡献

  1. 提出了一个双信息流网络(DIFNet ),它将分割特征作为一个附加的视觉信息源。DIFNet可以增强视觉内容对预测的贡献。
  2. 提出了一个称为迭代独立层归一化(IILN)的特征融合模块,它可以通过一个公共LN层压缩最相关的输入,同时通过私有LN层重新训练每个流中的特定于通道的信息。

引言

图像描述是基于给定图像生成自然语言描述的任务。它需要一个模型来从多个方面理解给定的图像,包括识别对象、动作以及关系,并为该图像生成语言描述。标准范例可以表述为: y t = F l ( E v ( V ) , w 0 , w 1 , w 2 , . . . , w t − 1 ) y_t= \mathcal F_l(E_v(V),w_0,w_1,w_2,...,w_{t-1}) yt=Fl(Ev(V),w0,w1,w2,...,wt1)其中 y t y_t yt表示预测结果, E v E_v Ev表示视觉编码器, F l \mathcal F_l F

评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值