【CVPR2022】DIFNet: Boosting Visual Information Flow for Image Captioning
论文主要贡献
- 提出了一个双信息流网络(DIFNet ),它将分割特征作为一个附加的视觉信息源。DIFNet可以增强视觉内容对预测的贡献。
- 提出了一个称为迭代独立层归一化(IILN)的特征融合模块,它可以通过一个公共LN层压缩最相关的输入,同时通过私有LN层重新训练每个流中的特定于通道的信息。
引言
图像描述是基于给定图像生成自然语言描述的任务。它需要一个模型来从多个方面理解给定的图像,包括识别对象、动作以及关系,并为该图像生成语言描述。标准范例可以表述为: y t = F l ( E v ( V ) , w 0 , w 1 , w 2 , . . . , w t − 1 ) y_t= \mathcal F_l(E_v(V),w_0,w_1,w_2,...,w_{t-1}) yt=Fl(Ev(V),w0,w1,w2,...,wt−1)其中 y t y_t yt表示预测结果, E v E_v Ev表示视觉编码器, F l \mathcal F_l F

DIFNet是一个双信息流网络,结合分割特征和网格特征以增强图像描述任务的性能。通过迭代独立层归一化(IILN)模块,DIFNet能有效融合两种视觉信息,并通过跳跃连接加强信息流,提高生成描述的准确性与视觉相关性。
最低0.47元/天 解锁文章
1777





