图像融合论文阅读:(DIF-Net)Unsupervised Deep Image Fusion With Structure Tensor Representations

@article{jung2020unsupervised,
title={Unsupervised deep image fusion with structure tensor representations},
author={Jung, Hyungjoo and Kim, Youngjung and Jang, Hyunsung and Ha, Namkoo and Sohn, Kwanghoon},
journal={IEEE Transactions on Image Processing},
volume={29},
pages={3845–3858},
year={2020},
publisher={IEEE}
}


论文级别:SCI AI
影响因子:10.6

📖[论文下载地址]



📖论文解读

早期2020年的一篇CNN-VIF论文。作者提出了一种基于CNN的【轻量级】【通用】图像融合网络DIF-Net
该网络使用CNN完成特征提取、特征融合、图像重建。
使用【多通道图像对比度】的【结构张量】作为损失函数。
该方法适用于任意维度的输入和输出。

一般来说,图像融合里的通用网络指的是可以实现多模态(红外-可见光,医学)、多聚焦、多曝光等图像融合的网络结构,并非某个特定图像融合任务专用的网络结构,具有广泛的适用性。

🔑关键词

Image fusion, image contrast, structure tensor, convolutional neural network, and unsupervised learning.
图像融合,图像对比度,结构张量,卷积神经网络,无监督学习

💭核心思想

网络结构其实就是CNN+ ResBlock,融合使用Concat+卷积,重构和提取一样
主要有趣的地方在作者使用了对比度的结构张量作为损失函数。

扩展学习
[什么是图像融合?(一看就通,通俗易懂)]

🪅相关背景知识

🪅结构张量

I I I为M通道图像,图像 I I I像素(x,y)处的梯度可以用Jacobian矩阵表示:
在这里插入图片描述
I i I_i Ii是图像 I I I的第 i i i个通道, ∇ x ∇x x或者 ∇ y ∇y y是水平或者垂直方向的导数。
v = [ c o s θ , s i n θ ] T v=[cos\theta, sin\theta]^T v=[cosθ,sinθ]T方向上的梯度由 J I x , y v J_{I^{x,y}}v JIx,yv给出
假设使用欧几里得度量(也就是欧式距离),图像 I I I v v v方向的像素(x,y)处对比度,可以用 J I x , y v J_{I^{x,y}}v JIx,yv计算:
在这里插入图片描述
2×2矩阵 Z I x , y = ( J I x , y ) T J I x , y Z_{I^{x,y}}=(J_{I^{x,y}})^TJ_{I^{x,y}} ZIx,y=(JIx,y)TJIx,y是一个【结构张量(structure tensor)】:
在这里插入图片描述
结构张量是具有实值的对称矩阵,因此它具有两个实数且非负的特征值。结构张量的特征向量表示多通道图像对比度最大和最小的方向,相应的特征值表示变化率。

扩展学习
欧几里得度量

🪢网络结构

作者提出的网络结构如下所示。目前看来清晰简单的结构,无需赘述,想要了解详细一点的同学可以去看原文。
在这里插入图片描述

📉损失函数

损失函数=强度项+结构项
在这里插入图片描述

🔢数据集

  • 训练:TNO

图像融合数据集链接
[图像融合常用数据集整理]

🎢训练设置

在这里插入图片描述

🔬实验

📏评价指标

在这里插入图片描述

  • MI- FMI- X- SCD- H- P- M

扩展学习
[图像融合定量指标分析]

🥅Baseline

  • NSCT, CBF, GFF, GTF, ConvSR,VggML,FusionGAN,DenseFuse

✨✨✨扩展学习
✨✨✨强烈推荐必看博客[图像融合论文baseline及其网络模型]✨✨✨

🔬实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

更多实验结果及分析可以查看原文:
📖[论文下载地址]


🚀传送门

📑图像融合相关论文阅读笔记

📑[(MURF: Mutually Reinforcing Multi-Modal Image Registration and Fusion]
📑[(A Deep Learning Framework for Infrared and Visible Image Fusion Without Strict Registration]
📑[(APWNet)Real-time infrared and visible image fusion network using adaptive pixel weighting strategy]
📑[Dif-fusion: Towards high color fidelity in infrared and visible image fusion with diffusion models]
📑[Coconet: Coupled contrastive learning network with multi-level feature ensemble for multi-modality image fusion]
📑[LRRNet: A Novel Representation Learning Guided Fusion Network for Infrared and Visible Images]
📑[(DeFusion)Fusion from decomposition: A self-supervised decomposition approach for image fusion]
📑[ReCoNet: Recurrent Correction Network for Fast and Efficient Multi-modality Image Fusion]
📑[RFN-Nest: An end-to-end resid- ual fusion network for infrared and visible images]
📑[SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images]
📑[SwinFusion: Cross-domain Long-range Learning for General Image Fusion via Swin Transformer]
📑[(MFEIF)Learning a Deep Multi-Scale Feature Ensemble and an Edge-Attention Guidance for Image Fusion]
📑[DenseFuse: A fusion approach to infrared and visible images]
📑[DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pair]
📑[GANMcC: A Generative Adversarial Network With Multiclassification Constraints for IVIF]
📑[DIDFuse: Deep Image Decomposition for Infrared and Visible Image Fusion]
📑[IFCNN: A general image fusion framework based on convolutional neural network]
📑[(PMGI) Rethinking the image fusion: A fast unified image fusion network based on proportional maintenance of gradient and intensity]
📑[SDNet: A Versatile Squeeze-and-Decomposition Network for Real-Time Image Fusion]
📑[DDcGAN: A Dual-Discriminator Conditional Generative Adversarial Network for Multi-Resolution Image Fusion]
📑[FusionGAN: A generative adversarial network for infrared and visible image fusion]
📑[PIAFusion: A progressive infrared and visible image fusion network based on illumination aw]
📑[CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for Multi-Modality Image Fusion]
📑[U2Fusion: A Unified Unsupervised Image Fusion Network]
📑综述[Visible and Infrared Image Fusion Using Deep Learning]

📚图像融合论文baseline总结

📚[图像融合论文baseline及其网络模型]

📑其他论文

📑[3D目标检测综述:Multi-Modal 3D Object Detection in Autonomous Driving:A Survey]

🎈其他总结

🎈[CVPR2023、ICCV2023论文题目汇总及词频统计]

✨精品文章总结

[图像融合论文及代码整理最全大合集]
[图像融合常用数据集整理]

🌻【如侵权请私信我删除】

如有疑问可联系:420269520@qq.com;
码字不易,【关注,收藏,点赞】一键三连是我持续更新的动力,祝各位早发paper,顺利毕业~

  • 18
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
封闭回路的无监督学习结构化表示 封闭回路的无监督学习结构化表示是一种机器学习方法,旨在通过建立闭环反馈以自动地学习数据之间的结构化表示。在无监督学习中,我们通常没有标签的辅助信息,因此要求模型能够从数据中自动发现隐藏的结构和模式。 封闭回路的无监督学习方法的关键思想是通过对模型输出和输入进行比较来进行训练。在这个闭环中,模型的输出被重新注入到模型的输入中,从而形成了一个持续的迭代过程。模型通过调整自身的参数来最小化输入和输出之间的差异,以此来改善所学到的表示。 使用封闭回路进行无监督学习的一个例子是自编码器。自编码器是一种神经网络模型,它的输入和输出都是相同的。模型的目标是通过学习如何将输入编码为一个低维的表示,并且能够从这个低维表示中重构出输入。在训练过程中,自编码器通过最小化输入和重构输出之间的差异来调整自身的参数。 封闭回路的无监督学习方法有许多优点。首先,由于无需标签,这种方法可以适用于大量未标记的数据。其次,学习到的结构化表示可以用于许多任务,如数据压缩、降噪、特征提取等。此外,通过引入封闭回路,模型可以在训练过程中不断自我纠正,从而改善表示的质量。 总之,封闭回路的无监督学习方法通过建立闭环反馈来自动地学习数据之间的结构化表示。该方法可以应用于无标签数据,并且通过迭代过程来不断改善所学到的表示。这种方法在很多任务中都具有广泛的应用前景。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

图像强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值