AcWing||1227. 分巧克力
活动地址:https://www.acwing.com/activity/content/19/
考察要点:二分
题目要求
儿童节那天有 K 位小朋友到小明家做客。
小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N 块巧克力,其中第 i 块是 Hi×Wi 的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。
切出的巧克力需要满足:
形状是正方形,边长是整数
大小相同
例如一块 6×5 的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行包含两个整数 Hi 和 Wi。
输入保证每位小朋友至少能获得一块 1×1 的巧克力。
输出格式
输出切出的正方形巧克力最大可能的边长。
数据范围
1≤N,K≤105,
1≤Hi,Wi≤105
输入样例:
2 10
6 5
5 6
输出样例:
2
题目地址:https://www.acwing.com/problem/content/1229/
解析:每块巧克力的长宽是不同的,所以需要建立一个二维数组进行存储,切割为正方形的巧克力,所以我们只需要枚举 边长 ,切割后是边角是不能进行拼接的。
代码思路 :巧克力的边长在1 ~ 105 之间 所以在区间内直接使用二分法,切割每个巧克力 块( 有效块数 = (长/边长) * (宽/边长) ) 将每块巧克力的有效快数加起来,若够分,则二分 还可以向上取 即 l = mid 否则 r = mid - 1;
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 1e5 + 10;
int n, k, h[N], w[N];
bool check(int mid)
{
int sum = 0; //为有效巧克力块数之和
for (int i = 0; i < n; i ++ ) //对每块巧克力进行切割
{
sum += h[i] / mid * (w[i] / mid); //先除后乘 所以需要加括号
if(sum >= k) return true; //切割到每个人都有了 则返回 true
}
return false;
}
int main()
{
scanf("%d%d",&n, &k); //n 块巧克力 k 个人
for (int i = 0; i < n; i ++ )
scanf("%d%d", &h[i],&w[i]);
int l = 1, r = 1e5;
while (l < r)
{
int mid = l + r + 1 >> 1; //向上取整 避免死循环
if( check(mid) ) l = mid; //如果够分则边长 可取大
else r = mid - 1; //不够分 则取小
}
printf("%d\n",r);
return 0;
}
本题:1227. 分巧克力
代码参考:视频讲解