首先,这道题或许由很多种做法,但是我觉得最基本的做法是bfs求无权图最短路径,先用bfs求出来所有可能的最短路径,再用dfs判断一下哪个是换乘最少的。
最重要的是记录最短路径,出队之后遍历这个点相邻的点时会遇到的情况,
1.bfs树上面当前点的父亲节点,也就是距离减一的点,不用管
2.和当前点同层的点,不用管
3.没有访问过的点,那么是距离加一,需要记录
4.访问过的点,但是距离也是加一,那么同样也要把当前出队点放入这个点的前驱储存起来,
输出的时候需要注意,首先输出站数,就是除去起点走的站数,然后只输出中间的换乘车站,这里需要注意,有可能你的路线经过换乘车站,但是是一直往前走的,这样的车站在当前的一组数据里面既不用输出,统计换乘个数来确定唯一的路径的时候也不用考虑在内,换乘的意思是从起点到终点有几个点改变了路线,不是那些有多条路线通过的点,
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
#define all(x) (x).begin(), (x).end()
using namespace std;
typedef long long ll;
typedef vector<int> vi;
typedef pair<int, int> pa;
const int N = 10005;
int min_t;
vi v[N];
vi pre[N];
vi temppath;
vi path;
map<pa, int> mp;
void bfs(int s1, int s2) {
queue<int> q;
q.push(s1);
int dist[N];
memset(dist, -1, sizeof(dist));
dist[s1] = 0;
while (!q.empty()) {
int now = q.front();
q.pop();
if (now == s2) return;
for (int i = 0; i < (int) v[now].size(); i++) {
int t = v[now][i];
if (dist[t] == -1) {
q.push(t);
dist[t] = dist[now] + 1;
pre[t].clear();
pre[t].pb(now);
} else if (dist[t] == dist[now] + 1) {
pre[t].pb(now);
}
}
}
}
void dfs(int s1, int s2) {
if (s1 == s2) {
temppath.pb(s2);
int temp_t = 0;
for (int i = 1; i < (int) temppath.size() - 1; i++) {
if (mp[make_pair(temppath[i + 1], temppath[i])] != mp[make_pair(temppath[i], temppath[i - 1])]) temp_t++;
}
if (temp_t < min_t) {
min_t = temp_t;
path = temppath;
}
temppath.pop_back();
return;
}
temppath.pb(s2);
for (int i = 0; i < (int) pre[s2].size(); i++) {
dfs(s1, pre[s2][i]);
}
temppath.pop_back();
}
void print() {
int t = (int) path.size() - 1;
cout << t << endl;
for (int i = t; i >= 0; i--) {
if (i == t) printf("Take Line#%d from %04d", mp[make_pair(path[i], path[i - 1])], path[i]);
else if (i && mp[make_pair(path[i + 1], path[i])] != mp[make_pair(path[i], path[i - 1])]) {
printf(" to %04d.\nTake Line#%d from %04d", path[i], mp[make_pair(path[i], path[i - 1])], path[i]);
} else if (!i) printf(" to %04d.\n", path[i]);
}
}
int main() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
int m;
cin >> m;
int a[105];
for (int j = 0; j < m; j++) {
cin >> a[j];
if (j) {
v[a[j]].pb(a[j - 1]);
v[a[j - 1]].pb(a[j]);
mp[make_pair(a[j - 1], a[j])] = mp[make_pair(a[j], a[j - 1])] = i;
}
}
}
int k;
cin >> k;
while (k--) {
int s1, s2;
cin >> s1 >> s2;
min_t = N;
bfs(s1, s2);
dfs(s1, s2);
print();
}
return 0;
}