[paper阅读笔记]:先验3D surfel map下的单目相机定位

Title:Monocular Direct Sparse Localization in a Prior 3D Surfel Map

Haoyang ye, 港科大的工作
https://ieeexplore.ieee.org/xpl/conhome/9187508/proceeding可以用这个链接检索一个会议的所有论文。

TODO: 这篇文章是2020年的icra上的,那感觉可以追踪一下这个组近两年有什么更新

知识扫盲

%surfel map全称其实是surf element-based map,应该是根据loam提出来的,loam里把lidar建图里的点提取为edge点和surf点,那么surfel map应该具有包含平面点信息的一张地图。

1 Summary 写完笔记之后最后填,概述文章的内容,以后查阅笔记的时候先看这一段。注:写文章summary切记需要通过自己的思考,用自己的语言描述。忌讳直接Ctrl + c原文。

本文作者提出了一个VO,这个VO需要用到lidar或者其他什么传感器建立的先验3D地图,并需要把它处理成surfel map,因为后续构建损失函数的时候涉及到平面参数的使用。然后因为约束中涉及到的平面是global坐标系下的,所以估计的当前帧位姿可以直接得到当前帧在global下的pose,因此可以避免单目相机的尺度漂移。此外,因为使用的是global下的平面参数,而不是上一参考帧下的平面参数,所以可以减少位姿漂移
但是也存在不使用的情况,在后文中也有提到,或者直接参考原文。
我觉得本文最大的贡献就是巧用了global地图的平面参数添加到损失函数中用于后续优化,然后我只需要一个大概的初始位姿,因为在优化的时候,要同时优化参考帧在global的位姿当前帧在global的位姿,相当于是普通的3D-2D优化(单目的,需要对深度比例因子也进行优化,如果是rgbd就不需要优化)加上了一个固定深度的点到平面优化(相当于深度已知)。

2 Research Objective(s) 作者的研究目标是什么?

在一个先验的lidar点云地图中,用相机去定位。

3 Problem Statement 问题陈述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值