代码随想录算法训练营第48天 | 动态规划 LeetCode198.打家劫舍,213.打家劫舍II,337.打家劫舍 III

@代码随想录算法训练营第48天 | 动态规划 LeetCode198.打家劫舍,213.打家劫舍II,337.打家劫舍 III

198.打家劫舍

第一遍读题思考

dp[i]代表打劫到第i家的时候抢到的最多的钱数。
那么递推公式就跟dp[i-1] and dp[i-2]有关,如果抢i-1家的,那么dp[i]=dp[i-1],如果抢i-2家的dp[i]=dp[i-2]+nums[i],所以递推公式取最大值。
确定初始化的话可以从递推公式看出要初始化dp[0]和dp[1]两个,dp[0]=nums[0], dp[1] = max(nums[0], nums[1]).

代码随想录解法思路

在这里插入图片描述

c++代码具体实现注意事项

class Solution {
public:
    int rob(vector<int>& nums) {
        vector<int> dp(nums.size(), 0);
        dp[0] = nums[0];
        if(nums.size()<2) return dp[nums.size()-1];
        dp[1] = max(nums[0], nums[1]);
        
        for(int i=2;i<nums.size();i++){
            dp[i] = max(dp[i-1], dp[i-2]+nums[i]);
        }
        return dp[nums.size()-1];
        
    }
};

213.打家劫舍II

第一遍读题思考

相比于第一版本的题目多了一个成环,也就是抢劫到最后一家的时候要考虑有没有第一家。

代码随想录解法思路

很巧妙的拆解成了两种情况,直接不考虑第一家或者最后一家,不然你遍历到最后一家的时候还要记录前面有没有抢劫第一家的。

c++代码具体实现注意事项

class Solution {
public:
    int rob(vector<int>& nums) {
        if(nums.size()==1) return nums[0];
        if(nums.size()==2) return max(nums[0], nums[1]);
        vector<int> nums1(nums.begin(),nums.end()-1);
        vector<int> nums2(nums.begin()+1, nums.end());
        int rob1 = robori(nums1);
        int rob2 = robori(nums2);
        return max(rob1, rob2);
        
    }
    int robori(vector<int>& nums) {
        vector<int> dp(nums.size(), 0);
        dp[0] = nums[0];
        if(nums.size()<2) return dp[nums.size()-1];
        dp[1] = max(nums[0], nums[1]);
        
        for(int i=2;i<nums.size();i++){
            dp[i] = max(dp[i-1], dp[i-2]+nums[i]);
        }
        return dp[nums.size()-1];
        
    }
};

337.打家劫舍 III

第一遍读题思考

偷二叉树的家,后续遍历?

代码随想录解法思路

确实遍历是后续遍历的思路,只不过在遍历到中间节点的处理方式很巧妙,分为是否rob当前节点两种情况

c++代码具体实现注意事项

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<int> robtree(TreeNode* node){
        if(node==NULL) return vector<int>{0,0};
        vector<int> left = robtree(node->left);
        vector<int> right = robtree(node->right);
        int robcur = node->val + left[0] + right[0];
        int notrob = max(left[0], left[1]) + max(right[0], right[1]);
        return vector<int>{notrob, robcur};
    }
    int rob(TreeNode* root) {
        vector<int> dp = robtree(root);
        return max(dp[0], dp[1]);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值