@代码随想录算法训练营第49天 | 动态规划 LeetCode121. 买卖股票的最佳时机,122.买卖股票的最佳时机II
121. 买卖股票的最佳时机
第一遍读题思考
一看题目当时用贪心好像做过。想想用dp的话,就得是个二维dp了,毕竟有两个状态啊,dp[i][0]就代表当天持有股票手里的钱,dp[i][1]就代表当天不持股手里的钱,然后根据地推公式当天如果持股的话得跟前一天比哪个持股所花的钱少,当天不持股得跟前一天不持股比如果今天卖掉赚的哪个多。
代码随想录解法思路
一样。
c++代码具体实现注意事项
class Solution {
public:
int maxProfit(vector<int>& prices) {
vector<vector<int>> dp(prices.size(), vector<int>{0,0});
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i=1;i<prices.size();i++){
dp[i][0] = max(dp[i-1][0], -prices[i]);
dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i]);
}
return max(dp[prices.size()-1][0], dp[prices.size()-1][1]);
}
};
122.买卖股票的最佳时机II
第一遍读题思考
首先dp数组的定义和上面那一道题一模一样就可以,然后不一样的唯一的一个地方就是在递推公式上,上一道题是只能买卖一次,但是现在可以多次买卖,那么在更新dp[i][0]的时候就要考虑上一次把股卖出去了这一次要买股的情况,也就是要考虑之前买卖的利润。
代码随想录解法思路
一样。
c++代码具体实现注意事项
注意只改了一个地方,五秒钟自己想到了,非常妙,自夸一下。
class Solution {
public:
int maxProfit(vector<int>& prices) {
vector<vector<int>> dp(prices.size(), vector<int>{0,0});
dp[0][0] = -prices[0];
dp[0][1] = 0;
for(int i=1;i<prices.size();i++){
dp[i][0] = max(dp[i-1][0], dp[i-1][1]-prices[i]);
dp[i][1] = max(dp[i-1][1], dp[i-1][0]+prices[i]);
}
return max(dp[prices.size()-1][0], dp[prices.size()-1][1]);
}
};