题目描述
抗日战争时期,冀中平原的地道战曾发挥重要作用。
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数DF(x,y):
对于两个站点x和y (x != y), 如果能找到一个站点z,当z被敌人破坏后,x和y不连通,那么我们称z为关于x,y的关键点。相应的,对于任意一对站点x和y,危险系数DF(x,y)就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数。
输入
输入数据第一行包含2个整数n(2 < = n < = 1000), m(0 < = m < = 2000),分别代表站点数,通道数;
接下来m行,每行两个整数 u,v (1 < = u, v < = n; u != v)代表一条通道;
最后1行,两个数u,v,代表询问两点之间的危险系数DF(u, v)。
输出
一个整数,如果询问的两点不连通则输出-1.
实例输入
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
实例输出
2
题解
- 本题的意思是找出到达终点的每一条路线都必须经过的点
- 每次都是直接探测到终点,所以用DFS算法
n,m = map(int,input().strip().split()) # n表示站点数,m通道数
l = [[0 for _ in range(n)] for _ in range(n)]
for i in range(m):
a,b = map(int,input().strip().split())
l[a-1][b-1]=1 # 如果有边记录的话 就=1
l[b-1][a-1]=1
start,end = map(int,input().strip().split())
start,end = start-1,end-1 # 要查找的点的下标
vis= [False for i in range(n)] # 没有拜访过就标记为0
s_path=[0 for i in range(n)] # 某一条路径可以到达终点的话 就给这条路径的s_path+1
def DFS(start,end):
global vis,s_path
if start == end:
for i in range(n):
if vis[i]==1: # 如果这条路已经经过的话 就给它经过的次数+1
s_path[i]+=1
for i in range(n):
if l[start][i]==1 and not vis[i]:
vis[i]=True
DFS(i,end) #递归
vis[i]=False # 回溯
"""因为用到的是深搜,一条路走到底,但是从i之前某个点上可能还有其它可行的分路,这些可行的分路可能也会经过i,题目要求我们要遍历所有可行的分路,所以要将visited[i]
重新设为零,使其他分路也有机会访问i节点 """
DFS(start,end)
#如果找到了路径,最后肯定i==end,所以每次end这个节点都会加1,最终结果就是和
#end次数相同的减去end本身
print(s_path.count(s_path[end])-1)