📖标题:FANNO: Augmenting High-Quality Instruction Data with Open-Sourced LLMs Only
🌐来源:arXiv, 2408.01323
🛎️文章简介
🔸研究问题:如何利用开源的大语言模型(LLM)高效地生成高质量、多样化和复杂的指令数据?
🔸主要贡献:论文提出了FANNO框架,通过文档预筛选、指令生成和响应生成的结构化流程,自动生成高质量的指令数据集。
📝重点思路
🔺相关工作
🔸指令数据生成:当前主要包括人工专家注释和大型LLM合成两种方法,但成本都比较高。
🔸指令调优:使用指令在广泛的上游任务数据集上训练LLM,然后通过新指令启用新的、未见过的下游任务的通用能力。
🔸数据质量增强:主要集中在指令难度、多样性和正确性等几个关键方面,还可以通过多个LLM和自我反思的协作方法来提高数据质量。
🔺论文方案
🔸FANNO框架:包括三个关键步骤:文档预筛选、指令生成和响应生成。
🔸文档预筛选