北大:LLM高质量数据生成框架FANNO

在这里插入图片描述

📖标题:FANNO: Augmenting High-Quality Instruction Data with Open-Sourced LLMs Only
🌐来源:arXiv, 2408.01323

🛎️文章简介

🔸研究问题:如何利用开源的大语言模型(LLM)高效地生成高质量、多样化和复杂的指令数据?
🔸主要贡献:论文提出了FANNO框架,通过文档预筛选、指令生成和响应生成的结构化流程,自动生成高质量的指令数据集。

📝重点思路

🔺相关工作

🔸指令数据生成:当前主要包括人工专家注释和大型LLM合成两种方法,但成本都比较高。
🔸指令调优:使用指令在广泛的上游任务数据集上训练LLM,然后通过新指令启用新的、未见过的下游任务的通用能力。
🔸数据质量增强:主要集中在指令难度、多样性和正确性等几个关键方面,还可以通过多个LLM和自我反思的协作方法来提高数据质量。

🔺论文方案

🔸FANNO框架:包括三个关键步骤:文档预筛选、指令生成和响应生成。
🔸文档预筛选࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型任我行

随意啦,喜欢就好~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值